Added script trying to decompose the stellar population

This commit is contained in:
Yohai Meiron 2020-04-16 20:51:01 -04:00
parent a624814a0c
commit 9ec0633094
4 changed files with 264 additions and 0 deletions

3
.gitignore vendored
View file

@ -1,3 +1,6 @@
.*
main
libmain.so
data
__pycache__
*.png

56
density_center.py Normal file
View file

@ -0,0 +1,56 @@
#!/usr/bin/env python3
import numpy as np
def def_dc(m, x, v=None, r_min=0.0045):
"""
Calculates the center of density. Translated to Python from phiGRAPE.
Parameters
----------
m, x, v : array_like
Particle parameters. v is optional.
r_min : scalar
For star clusters, should be 0.1 pc in N-body units.
Returns
-------
xdc, vdc : ndarrays
"""
calc_vdc = not v is None
x_ = x.copy()
xdc = np.zeros(3)
if calc_vdc:
v_ = v.copy()
vdc = np.zeros(3)
else:
v_ = None
r_lim = np.sqrt(np.max(np.sum(x**2, axis=1)))
num_iter = 0
while (r_lim > r_min) and (num_iter < 100):
ncm, mcm, xcm, vcm = cenmas_lim(m, x_, v_, r_lim)
if((mcm > 0) and (ncm > 100)):
x_ -= xcm
xdc += xcm
if calc_vdc:
v_ -= vcm
vdc += vcm
else:
break
r_lim *= 0.8
num_iter += 1
if calc_vdc:
return xdc, vdc
else:
return xdc
def cenmas_lim(m, x, v, r_lim):
r2 = np.sum(x**2, axis=1)
cond = r2 < r_lim**2
ncm = np.sum(cond)
mcm = np.sum(m[cond])
if mcm == 0: return ncm, 0., np.zeros(3), np.zeros(3)
xcm = np.sum(m[cond,None] * x[cond,:], axis=0) / mcm
if not v is None: vcm = np.sum(m[cond,None] * v[cond,:], axis=0) / mcm
else: vcm = None
return ncm, mcm, xcm, vcm

65
ellipsoids.py Normal file
View file

@ -0,0 +1,65 @@
import numpy as np
def quadrupole_tensor(x, y, z, m=1):
Qxx = np.sum(m*x**2)
Qyy = np.sum(m*y**2)
Qzz = np.sum(m*z**2)
Qxy = Qyx = np.sum(m*x*y)
Qxz = Qzx = np.sum(m*x*z)
Qzy = Qyz = np.sum(m*z*y)
return np.array([[Qxx, Qxy, Qxz],
[Qyx, Qyy, Qyz],
[Qzx, Qzy, Qzz]])
def rotation_matrix_from_eigenvectors(eigenvectors, eigenvalues):
"""
Calculates a rotation matrix such that the eigenvector with the largest
eigenvalue points in the x-direction, the eigenvector with the middle
eigenvalue points in the y-direction, and so on.
"""
return np.array([eigenvectors[:,i] for i in np.argsort(eigenvalues)[::-1]])
def generate_ellipsoid(n, power, a, b, c, euler_1, euler_2, euler_3, seed=None):
from scipy.spatial.transform import Rotation
if not (a >= b >= c):
raise ValueError('Requires a >= b >= c')
b_over_a = b/a
c_over_a = c/a
np.random.seed(seed)
# Create a sphere of particles with radius a.
r = (np.random.rand(n)**power)*a
theta = np.arccos(np.random.rand(n)*2-1)
phi = np.random.rand(n)*2*np.pi
x = r*np.cos(phi)*np.sin(theta)
y = r*np.sin(phi)*np.sin(theta)
z = r* np.cos(theta)
# Scale the intermediate and minor axes
y *= b_over_a
z *= c_over_a
# Rotate
rotation = Rotation.from_euler('zxz', [euler_1, euler_2, euler_3])
return rotation.apply(np.stack((x,y,z), axis=1))
if __name__ == '__main__': # Test if the above routines
n = 65536
power = 1.5
a, b, c = 2.3, 0.92, 0.345 # or sorted(np.random.rand(3))[::-1]
angles = 0.43, 1.81, 0.32 # or np.random.rand(3)*2*np.pi
X = generate_ellipsoid(n, power, a, b, c, *angles, seed=None)
Q = quadrupole_tensor(*X.T)
eigenvalues, eigenvectors = np.linalg.eig(Q)
i = np.argsort(eigenvalues)
print('measured b/a = %.4f (expected %.4f)' % (np.sqrt(eigenvalues[i[1]]/eigenvalues[i[2]]), b/a))
print('measured c/a = %.4f (expected %.4f)' % (np.sqrt(eigenvalues[i[0]]/eigenvalues[i[2]]), c/a))
R = rotation_matrix_from_eigenvectors(eigenvectors, eigenvalues)
print('Rotating vectors and recalculating quadrupole tensor...')
X_new = (R @ X.T).T
Q_new = quadrupole_tensor(*X_new.T)
print('%11.4e %11.4e %11.4e' % tuple(Q_new[0,:]))
print('%11.4e %11.4e %11.4e' % tuple(Q_new[1,:]))
print('%11.4e %11.4e %11.4e' % tuple(Q_new[2,:]))
print('... it should be almost diagonal.')

140
three_components.py Normal file
View file

@ -0,0 +1,140 @@
#pylint: disable=W0401,W0614,W0622
#All pylint codes: http://pylint.pycqa.org/en/latest/technical_reference/features.html
from pylab import *
import h5py
from density_center import def_dc
import ellipsoids
import scipy.optimize
# Simumation parameters
h0 = 0.6774
# Halo parameters
file_name = 'data/subhalo_411321.hdf5'
# centers_file_name = 'data/centers_411321.hdf5'
### Snapshot parameters ###
snapshot = 99
a = 1.0 # Should read this value from somewhere!
# Read the centre from separate file
# DISABLED: we calculate on our own.
# f = h5py.File(centers_file_name, 'r')
# X_center = f[str(snapshot)]['Coordinates'][...]
# V_center = f[str(snapshot)]['Velocities'][...]
# f.close()
# Dictionary of particle types
particle_types = {}
particle_types['gas'] = '0'
particle_types['dm'] = '1'
particle_types['stars'] = '4'
particle_types['bhs'] = '5'
# Read stars
particle_type = 'stars'
with h5py.File(file_name, 'r') as f:
m = f[str(snapshot)][particle_types[particle_type]]['Masses'][...]
X = f[str(snapshot)][particle_types[particle_type]]['Coordinates'][...] * a / h0
V = f[str(snapshot)][particle_types[particle_type]]['Velocities'][...] * sqrt(a)
M_tot = sum(m)
# Calculate density centre and shift appropriately
X_center_new, V_center_new = def_dc(m, X, V)
X -= X_center_new
V -= V_center_new
# Rotate such that the short axis is z and medium axis is y
r = linalg.norm(X, axis=1)
rh = median(r)
mask = r < 2*rh
Q = ellipsoids.quadrupole_tensor(*X[mask].T, m[mask])
eigenvalues, eigenvectors = np.linalg.eig(Q)
R = ellipsoids.rotation_matrix_from_eigenvectors(eigenvectors, eigenvalues)
X_new = (R @ X.T).T
x, y, z = X_new.T
# d is the axial distance
d = sqrt(x**2 + y**2)
# Cread a two-dimensional grid
# The grid sizes don't _have to_ be equal in both directions, but there is some
# logic in keeping them the same.
n_grid = 16
d_max = 2*median(d)
z_max = 2*median(abs(z))
d_grid = linspace(0, d_max, n_grid+1)
z_grid = linspace(0, z_max, n_grid+1)
# Calculates the mass in each (d,z)-cell
# We fold negative z-values assuming symmetry with respect to the xy-plane
values, _, _ = histogram2d(d, abs(z), bins=[d_grid, z_grid], weights=m)
values = values.T # Needed because how histogram2d workds
# Calculate the volume of each (d,z)-cell (cylinder subtraction)
d_edges, z_edges = meshgrid(d_grid, z_grid, indexing='xy')
volumes = pi*(d_edges[1:,1:]**2 - d_edges[1:,:-1]**2)*(z_edges[1:,1:] - z_edges[:-1,1:])
# Finally we have the density as a function of d and z. The normalization is to
# make the numbers easier to work with for the minimization routine.
rho_measured_normalized = values/volumes/M_tot
# Define Plummer and Miyamoto-Nagai density
rho_plummer = lambda r, M, b: (3*M/(4*pi*b**3))*(1+(r/b)**2)**(-2.5)
rho_mn = lambda d, z, M, a, b: \
(b**2 * M / (4*pi)) * \
(a*d**2 + (a + 3*sqrt(z**2+b**2))*(a+sqrt(z**2+b**2))**2) / \
((d**2 + (a+sqrt(z**2+b**2))**2)**2.5 * (z**2+b**2)**1.5)
# The minimization procedure
means = lambda arr: .5*(arr[:-1]+arr[1:]) # small helper function
# Define a grid of the centre of each cell from the histogram we created earlier
dd, zz = meshgrid(means(d_grid), means(z_grid))
def cost(args):
f_plummer, b_plummer, a_mn, b_mn = args
f_mn = 1 - f_plummer
rho = rho_plummer(sqrt(dd**2+zz**2), f_plummer, b_plummer) + rho_mn(dd, zz, f_mn, a_mn, b_mn)
square_diff = (rho - rho_measured_normalized)**2
return sum(square_diff)
minimization_result = \
scipy.optimize.minimize(cost, [0.5, rh, median(abs(z)), median(d)],
method='Nelder-Mead', tol=1e-6, options={'maxiter':5000})
f_plummer, b_plummer, a_mn, b_mn = minimization_result.x
print(f'f_plummer = {f_plummer:.4f} b_plummer = {b_plummer:.4f} kpc a_mn = {a_mn:.4f} kpc b_mn = {b_mn:.4f} kpc')
print(f'M_plummer = {f_plummer*M_tot:.2e} MSun M_mn = {(1-f_plummer)*M_tot:.2e} MSun')
# Compare with Matteo's results
with h5py.File(file_name, 'r') as f:
particle_id = f[str(snapshot)][particle_types[particle_type]]['ParticleIDs'][...]
matteo_id = f[str(snapshot)][particle_types[particle_type]]['IDs_truncated'][...]
matteo_component_tag = f[str(snapshot)][particle_types[particle_type]]['Component'][...]
# Find the array indices in the original arrays that appear in Matteo's list
i = particle_id.argsort()
matteo_disk_ids = matteo_id[matteo_component_tag==1]
i_matteo_disk = i[searchsorted(particle_id[i], matteo_disk_ids)]
matteo_bulge_ids = matteo_id[matteo_component_tag==2]
i_matteo_bulge = i[searchsorted(particle_id[i], matteo_bulge_ids)]
# Print Matteo's results
M_matteo_bulge = sum(m[i_matteo_bulge])
M_matteo_disk = sum(m[i_matteo_disk])
rh_matteo_bulge = median(r[i_matteo_bulge])
print('=== Matteo\'s results ===')
print(f'M_bulge = {M_matteo_bulge:.2e} MSun M_disk = {M_matteo_disk:.2e} MSun')
print(f'rh_bulge = {rh_matteo_bulge:.4f} kpc (equivalent Plummer radius: {0.76642*rh_matteo_bulge:.4f}) kpc')
# Plot the density as a function of d for three values of z.
f_mn = 1 - f_plummer
rho = lambda d, z: rho_plummer(sqrt(d**2+z**2), f_plummer, b_plummer) + rho_mn(d, z, f_mn, a_mn, b_mn)
for c, i in enumerate([0, 3, 6, 9]):
semilogy(dd[i,:], M_tot*rho_measured_normalized[i,:], c=f'C{c}', ls='-', label=f'h={1000*zz[i,0]:.0f} pc')
semilogy(dd[i,:], M_tot*rho(dd[i,:], zz[i,0]), c=f'C{c}', ls='--', alpha=0.5)
legend()
xlabel('x [kpc]')
ylabel(r'$\rho\ [\rm M_\odot\ kpc^{-3}]$')
savefig('subhalo_411321_stellar_fit.png')
show()