cosmo-replay/main.cpp

131 lines
No EOL
3.9 KiB
C++

#include <algorithm>
#include <fstream>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_odeiv2.h>
#include <gsl/gsl_spline.h>
#include <iostream>
#include <numeric>
#include <string>
#include <stdexcept>
#include <vector>
#include "loadtxt.h"
extern "C" const int gsl_success() { return GSL_SUCCESS; } // It's zero, but just for clarity sake.
// Our units are {kiloparsec, solar mass, gigayear}
constexpr double G = 4.498317481097514e-06;
class Interp {
public:
Interp(std::vector<double>& x, std::vector<double>& y)
{
acc = gsl_interp_accel_alloc();
spline = gsl_spline_alloc(gsl_interp_cspline, x.size());
gsl_spline_init(spline, x.data(), y.data(), x.size());
}
Interp() {}
inline double operator()(double x) const
{
return gsl_spline_eval(spline, x, acc);
}
private:
gsl_interp_accel *acc;
gsl_spline *spline;
};
class Plummer {
public:
Plummer(double M, double b)
: M(M), b(b) {}
void calc_acceleration(const double *pos, double *acc)
{
double r2 = (pos[0]*pos[0] + pos[1]*pos[1] + pos[2]*pos[2] + b*b);
double r = sqrt(r2);
double r3_inv = 1/(r*r2);
acc[0] = -G*M*pos[0]*r3_inv;
acc[1] = -G*M*pos[1]*r3_inv;
acc[2] = -G*M*pos[2]*r3_inv;
}
private:
double M, b;
};
class Galaxy {
public:
Galaxy(std::string file_name)
{
auto data = Loadtxt("file.dat", {1, 2, 3}).get_cols();
auto& t_data = data[0];
auto& halo_m_data = data[1];
auto& halo_b_data = data[2];
std::transform(t_data.begin(), t_data.end(), t_data.begin(), [](const double& x){ return x-2.145; });
std::transform(halo_b_data.begin(), halo_b_data.end(), halo_b_data.begin(), [](const double& x){ return x*0.7664209365408798; });
interp_halo_m = Interp(t_data, halo_m_data);
interp_halo_b = Interp(t_data, halo_b_data);
}
int func(double t, const double y[], double f[], void *params)
{
double halo_m = interp_halo_m(t);
double halo_b = interp_halo_b(t);
Plummer plummer(halo_m, halo_b);
f[0] = y[3]; // vx -> x'
f[1] = y[4]; // vy -> y'
f[2] = y[5]; // vz -> z'
plummer.calc_acceleration(y, f+3); // a -> v'
return GSL_SUCCESS;
}
private:
Interp interp_halo_m;
Interp interp_halo_b;
} galaxy("file.dat");
// Not very nice to have it as a global variable but GSL will have problem otherwise.
int jac(double t, const double y[], double *dfdy, double dfdt[], void *params) { return GSL_SUCCESS; }
inline int func(double t, const double y[], double f[], void *params)
{
return galaxy.func(t, y, f, params);
}
extern "C"
int integrate(const double y0[], const double t_max, const double step_size, double y[])
{
double t = 0;
constexpr double h = 1./4096.;
if (step_size/h - (int)(step_size/h) != 0) throw std::runtime_error("step_size must be a multiple of h");
constexpr double epsabs = 1e-7;
constexpr double epsrel = 0;
const gsl_odeiv2_step_type *T = gsl_odeiv2_step_rk8pd;
gsl_odeiv2_step *s = gsl_odeiv2_step_alloc(T, 6);
gsl_odeiv2_evolve *e = gsl_odeiv2_evolve_alloc(6);
gsl_odeiv2_control *c = gsl_odeiv2_control_y_new(epsabs, 0);
gsl_odeiv2_system sys = {func, jac, 6, nullptr};
gsl_odeiv2_driver *d = gsl_odeiv2_driver_alloc_y_new(&sys, T, h, epsabs, epsrel);
int step = 0;
const int step_max = t_max / step_size;
std::copy(y0, y0+6, y);
for (int step=0; step<step_max; step++) {
std::copy(y+step*6, y+(step+1)*6, y+(step+1)*6);
int status = gsl_odeiv2_driver_apply(d, &t, (step+1)*step_size, y+(step+1)*6);
if (status != GSL_SUCCESS) return status;
}
return GSL_SUCCESS;
}
int main()
{
std::cout << "bye" << std::endl;
double y[12];
double y0[] = {80,0,0,0,80,0};
for (int i=0; i<30000; i++)
integrate(y0, 10, 10, y);
return 0;
}