cosmo-replay/scattering_experiment.cpp

227 lines
No EOL
8.5 KiB
C++

#include <array>
#include <atomic>
#include <Eigen/Geometry>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <mutex>
#include <random>
#include <string>
#include <thread>
#include <time.h> // We just want to print the timestamp
#include <unistd.h>
using double3 = Eigen::Vector3d;
extern "C"
void integrate(const double y0[], const double t_max, const double stride_size, double y[]);
std::string git_version() {
std::string result;
std::ifstream git_log(".git/logs/HEAD");
if (git_log) {
std::string prev_line, line;
getline(git_log, prev_line);
while (getline(git_log, line)) {
prev_line = line;
}
if (prev_line.length() > 51) result = prev_line.substr(41, 10);
else result = "UNKNOWN";
} else result = "UNKNOWN";
return result;
}
std::string iso_time(std::chrono::system_clock::time_point time)
{
auto time_c = std::chrono::system_clock::to_time_t(time);
auto timeinfo = gmtime(&time_c);
char time_string[256];
strftime(time_string,256,"%FT%TZ", timeinfo);
return std::string(time_string);
}
class In_box_cyl {
public:
In_box_cyl(const double pos_tol, const double vel_tol, const double3 target_pos, const double3 target_vel)
: pos_tol(pos_tol), vel_tol(vel_tol)
{
target_d = sqrt(target_pos[0]*target_pos[0] + target_pos[1]*target_pos[1]);
target_z = target_pos[2];
target_vd = (target_pos[0]*target_vel[0] + target_pos[1]*target_vel[1])/target_d;
target_vt = (target_pos[0]*target_vel[1] - target_pos[1]*target_vel[0])/target_d;
target_vz = target_vel[2];
}
bool operator()(const double w[6]) {
const double d = sqrt(w[0]*w[0] + w[1]*w[1]);
const double& z = w[2];
const double vd = (w[0]*w[3] + w[1]*w[4])/d;
const double vt = (w[0]*w[4] - w[1]*w[3])/d;
const double& vz = w[5];
return (abs(d - target_d) < pos_tol)
&& (abs(z - target_z) < pos_tol)
&& (abs(vd - target_vd) < vel_tol)
&& (abs(vt - target_vt) < vel_tol)
&& (abs(vz - target_vz) < vel_tol);
}
friend std::ostream& operator<<(std::ostream& stream, const In_box_cyl& obj)
{
stream.setf(std::ios::scientific);
stream << "# Acceptor type: box in cylindrical coordinates\n";
stream << "# Acceptor parameters:\n";
stream << "# pos_tol = " << std::setw(13) << obj.pos_tol << '\n';
stream << "# vel_tol = " << std::setw(13) << obj.vel_tol << '\n';
stream << "# target_d = " << std::setw(13) << obj.target_d << '\n';
stream << "# target_z = " << std::setw(13) << obj.target_z << '\n';
stream << "# target_vd = " << std::setw(13) << obj.target_vd << '\n';
stream << "# target_vt = " << std::setw(13) << obj.target_vt << '\n';
stream << "# target_vz = " << std::setw(13) << obj.target_vz << '\n';
}
private:
double pos_tol, vel_tol;
double target_d, target_z, target_vd, target_vt, target_vz;
};
class Box_initial_conditions {
public:
Box_initial_conditions(double x_max, double v_max)
: x_max(x_max), v_max(v_max)
{
position_distribution = std::uniform_real_distribution(-x_max, x_max);
velocity_distribution = std::uniform_real_distribution(-v_max, v_max);
}
template<typename Generator>
std::array<double,6> operator()(Generator& generator)
{
std::array<double,6> result;
for (int i=0; i<3; i++) result[i] = position_distribution(generator);
for (int i=3; i<6; i++) result[i] = velocity_distribution(generator);
return result;
}
friend std::ostream& operator<<(std::ostream& stream, const Box_initial_conditions& obj)
{
stream.setf(std::ios::scientific);
stream << "# Initial conditions type: uniform box\n";
stream << "# Initial conditions parameters:\n";
stream << "# x_max = " << std::setw(13) << obj.x_max << '\n';
stream << "# v_max = " << std::setw(13) << obj.v_max << '\n';
}
private:
double x_max, v_max;
std::uniform_real_distribution<> position_distribution, velocity_distribution;
};
template<typename Acceptor, typename Initial_conditions>
class Scattering_experiment {
public:
Scattering_experiment(const std::string file_name, const double t_max, const unsigned long long n_experiments, Initial_conditions& initial_conditions, Acceptor& accept)
: bunch_size(256), n_experiments(n_experiments), report_interval_seconds(300), t_max(t_max), accept(accept), initial_conditions(initial_conditions)
{
auto time = std::chrono::system_clock::now();
file = std::ofstream(file_name/*, std::ofstream::app*/);
file << "#############################################\n";
file << "# Cosmological replay scattering experiment #\n";
file << "#############################################\n";
file << "# Time: " << iso_time(time) << '\n';
file << "# Last Git commit: " << git_version() << '\n';
char hostname[256];
gethostname(hostname, 256);
file << "# Hostname: " << hostname << '\n';
const auto pid = getpid();
file << "# PID: " << pid << '\n';
const unsigned long time_count = time.time_since_epoch().count();
const unsigned long big_prime = 840580612873L;
unique_id = time_count + big_prime*pid; // TODO hash it
file << "# Unique identifier: " << unique_id << '\n';
n_threads = std::thread::hardware_concurrency();
file << "# Concurrency: " << n_threads << '\n';
file << initial_conditions;
file << accept;
file.flush();
file.setf(std::ios::scientific | std::ios::right);
file.precision(16);
// TODO information about galaxy model
}
~Scattering_experiment() {
file.close();
}
void thread_task(int tid)
{
auto thread_begin_time = std::chrono::system_clock::now();
auto report_interval = std::chrono::seconds(report_interval_seconds);
auto next_report_time = thread_begin_time + report_interval;
std::default_random_engine generator(unique_id + tid);
while (counter < n_experiments) {
for (int i=0; i<bunch_size; i++) {
auto ic = initial_conditions(generator);
double y[12];
integrate(ic.data(), t_max, t_max, y);
if (accept(y+6)) {
std::lock_guard<std::mutex> lock(mtx);
char buffer[512];
file << std::setw(3) << tid;
for (int j=0; j<12; j++) file << std::setw(24) << y[j];
file << std::endl;
}
}
counter += bunch_size;
if (tid == 0) {
auto now = std::chrono::system_clock::now();
if (now >= next_report_time) {
std::lock_guard<std::mutex> lock(mtx);
file << "# " << iso_time(now) << " counter = " << counter << std::endl;
next_report_time = now + report_interval;
}
}
}
}
void launch()
{
counter = 0;
for (int tid=0; tid<n_threads; tid++) {
threads.push_back(std::thread(&Scattering_experiment::thread_task, this, tid));
}
for (auto& t : threads) {
t.join();
}
std::cout << counter << '\n';
}
std::ofstream file;
std::mutex mtx;
int n_threads;
std::vector<std::thread> threads;
std::atomic<unsigned long long> counter;
unsigned long long n_experiments;
unsigned long unique_id;
int bunch_size;
int report_interval_seconds;
double t_max;
Acceptor accept;
Initial_conditions initial_conditions;
};
int main()
{
std::cout << "Hi\n";
const double t_max = 11.65551390; // Gyr
double3 target_pos = {-9.1817914423447837E+03, -2.3161972143758221E+03, 4.2321813890923086E+03}; // pc
double3 target_vel = { 1.6995805137819784E+02, 1.3476658021349482E+02, -1.3342192079702110E+02}; // km/s
// Unit adjustment
target_pos *= 0.001; // Now in kpc
target_vel *= 1.0226911647958985; // Now in kpc/Gyr
In_box_cyl accept(2, 20, target_pos, target_vel);
Box_initial_conditions box_initial_conditions(75, 250);
Scattering_experiment scattering_experiment("results.dat", t_max, 1000000000L, box_initial_conditions, accept);
scattering_experiment.launch();
std::cout << "Bye\n";
return 0;
}