Removed more ifdef blocks

This commit is contained in:
Yohai Meiron 2020-03-13 16:58:41 -04:00
parent 510b0ff02d
commit 2c05355eaa
5 changed files with 56 additions and 2535 deletions

View file

@ -1,376 +0,0 @@
/**************************************************************
File : act_def_linklist.c
Func. : provide linear linking list functions
: for active particle def.
CODED BY : Zhong Shiyan
START : 2014-03-28, 12:30
**************************************************************/
//***********************************************************//
/* Definition of T/P-node */
//***********************************************************//
typedef struct PNODE
{
int Pid; // Particle's real ID
struct PNODE *NextPNODE;
} PNODE;
typedef struct TNODE
{
double t_node; // t_node = t + dt
int n_node; // number of P-nodes under this node
struct PNODE *PartList, *PartListEnd;
struct TNODE *NextTNODE;
} TNODE;
struct TNODE *CurrT=NULL;
//***********************************************************//
/* Operations on T/P-node */
//***********************************************************//
struct TNODE *CreateTNODE( double t ){
struct TNODE *ptr;
ptr = (TNODE*)malloc(sizeof(*ptr));
if( ptr == NULL ){
printf("Fail to create a node.");
exit(-1);
}
ptr->t_node = t;
ptr->n_node = 0;
ptr->NextTNODE = NULL;
ptr->PartList = NULL;
ptr->PartListEnd = NULL;
return ptr;
}
//***********************************************************//
struct PNODE *DeletePNODE( struct PNODE *ptr ){
struct PNODE *next;
next = ptr->NextPNODE;
free(ptr);
return next;
}
//***********************************************************//
void DeleteTNODE( struct TNODE *Tptr ){
struct PNODE *Pptr;
Pptr = Tptr->PartList;
while( Pptr != NULL ){
Pptr = DeletePNODE( Pptr );
}
free(Tptr);
return;
}
//***********************************************************//
struct PNODE *CreatePNODE( int id ){
struct PNODE *ptr;
ptr = (PNODE*)malloc(sizeof(*ptr));
if( ptr == NULL ){
printf("Fail to create a P-node.");
return NULL;
}
ptr->Pid = id;
ptr->NextPNODE = NULL;
return ptr;
}
//***********************************************************//
void InsertTNODE( struct TNODE *front,
struct TNODE *rear,
struct TNODE *ptr )
{
front->NextTNODE = ptr;
ptr->NextTNODE = rear;
}
//***********************************************************//
//***********************************************************//
/* Functions about act_def */
//***********************************************************//
/**************************************************************
This function only called 1 time, at beginning of simulation.
After all particle's dt are computed
**************************************************************/
void CreateLinkList(){
struct TNODE *head,*tail,*Tp1,*Tp2,*newTNODE,*Tptr;
struct PNODE *Pptr,*Ptail;
int i, iii;
double ttmp, t1, t2;
head = CreateTNODE( -1.0 ); // will be discarded at the end of this routine
tail = CreateTNODE( 2.0*t_end );
head->NextTNODE = tail;
tail->NextTNODE = NULL;
// building link list
for(i=0;i<N;i++){
ttmp = t[i] + dt[i];
iii = ind[i];
if( m[iii] == 0.0 ) ttmp = t_end + 0.125;
Tp1 = head;
Tp2 = Tp1->NextTNODE;
t1 = Tp1->t_node;
t2 = Tp2->t_node;
Pptr = CreatePNODE( iii );
while( Tp1->NextTNODE != NULL ){
if( ttmp == t1 ){ // if T-node exist, add a P-node
if( Tp1->PartListEnd == NULL ){ // This is the first P-node under current T-node
Tp1->PartList = Pptr;
Tp1->PartListEnd = Pptr;
Tp1->n_node = Tp1->n_node + 1;
}
else{ // There are already many P-nodes under this T-node
Ptail = Tp1->PartListEnd;
Ptail->NextPNODE = Pptr;
Tp1->PartListEnd = Pptr;
Tp1->n_node = Tp1->n_node + 1;
}
break; // jump out of this "while" loop
}
if( ttmp > t1 && ttmp < t2 ){ // Create a new T-node and insert between *Tp1 and *Tp2, then add P-node to it
newTNODE = CreateTNODE(ttmp);
InsertTNODE( Tp1, Tp2, newTNODE);
newTNODE->n_node = 1;
newTNODE->PartList = Pptr;
newTNODE->PartListEnd = Pptr;
break; // jump out of this "while" loop
}
// move to next T-node
Tp1 = Tp1->NextTNODE;
t1 = Tp1->t_node;
if(Tp2->NextTNODE != NULL){
Tp2 = Tp2->NextTNODE;
t2 = Tp2->t_node;
}
else{ break; }
}// while( Tp1->NextTNODE != NULL )
}//for(i=0;i<N;i++)
CurrT = head->NextTNODE;
free(head);
}
//End of CreateLinkList()
/**************************************************************/
/**************************************************************
This Function is used to modify the link list,
after get new dt for active particles. Then point *CurrT to next
T-node.
**************************************************************/
void ModifyLinkList(){
struct TNODE *Tp1,*Tp2,*newTNODE;
struct PNODE *Pptr,*Ptail;
int i, iii;
double ttmp, t1, t2;
for(i=0;i<n_act;i++){
iii = ind_act[i];
ttmp = t[iii] + dt[iii];
Tp1 = CurrT;
Tp2 = Tp1->NextTNODE;
t1 = Tp1->t_node;
t2 = Tp2->t_node;
Pptr = CreatePNODE( iii );
while( Tp1->NextTNODE != NULL ){
if( ttmp == t1 ){ // if T-node exist, add a P-node
if( Tp1->PartListEnd == NULL ){ // This is the first P-node under current T-node
Tp1->PartList = Pptr;
Tp1->PartListEnd = Pptr;
Tp1->n_node = Tp1->n_node + 1;
}
else{ // There are already many P-nodes under this T-node
Ptail = Tp1->PartListEnd;
Ptail->NextPNODE = Pptr;
Tp1->PartListEnd = Pptr;
Tp1->n_node = Tp1->n_node + 1;
}
break; // jump out of this "while" loop
}
if( ttmp > t1 && ttmp < t2 ){ // Create a new T-node and insert between *Tp1 and *Tp2, then add P-node to it
newTNODE = CreateTNODE(ttmp);
InsertTNODE( Tp1, Tp2, newTNODE);
newTNODE->n_node = 1;
newTNODE->PartList = Pptr;
newTNODE->PartListEnd = Pptr;
break; // jump out of this "while" loop
}
// move to next T-node
Tp1 = Tp1->NextTNODE;
t1 = Tp1->t_node;
if(Tp2->NextTNODE != NULL){
Tp2 = Tp2->NextTNODE;
t2 = Tp2->t_node;
}
else{ break; }
}//while( Tp1->NextTNODE != NULL )
}//for(i=0;i<n_act;i++)
Tp1 = CurrT;
CurrT = CurrT->NextTNODE;
DeleteTNODE( Tp1 );
}
//End of ModifyLinkList()
/***************************************************************/
/***************************************************************/
/*
void i_swap(int *a, int *b)
{
register int tmp;
tmp = *a; *a = *b; *b = tmp;
}
*/
/***************************************************************/
/***************************************************************/
void ind_act_sort(int l, int r)
{
int i, j, cikl, tmp;
i = l; j = r;
tmp = ind_act[(l+r)/2];
cikl = 1;
while(cikl)
{
while (ind_act[i]<tmp) i++;
while (tmp<ind_act[j]) j--;
if (i<=j)
{
i_swap(&ind_act[i],&ind_act[j]);
i++; j--;
}
else
{
cikl = 0;
}
}
if (l<j) ind_act_sort(l, j);
if (i<r) ind_act_sort(i, r);
}
/**************************************************************/
/**************************************************************
Get active particle list
**************************************************************/
void get_act_plist()
{
struct PNODE *Pptr;
int i, iii, j,k, itmp, ipt, flag;
char idcFile[30];
FILE *idcomp;
i=0;
Pptr = CurrT->PartList;
n_act = 0;
min_t = CurrT->t_node; // IMPORTANT !!
flag = 0;
while(Pptr != NULL)
{
iii = Pptr->Pid;
Pptr = Pptr->NextPNODE;
if( m[iii] != 0.0 ) // Do not put zero mass part. in active plist
{
ind_act[i] = iii;
// if(ind_act[i]==N-1) flag=1;
i++; n_act++;
}
}
if( n_act > 2 ) ind_act_sort( 0, n_act-1 );
// printf("last pid: %06d\n", ind_act_ll[n_act-1]);
// if( flag == 0 ) printf("Warning: BH not in the ind_act array!\n");
// if( ind_act[n_act-1]!= N-1) printf("Warning: BH not in the last of ind_act array!\n");
}// End of get_act_plist()
/**************************************************************/
#ifdef DEBUG_extra
/**************************************************************
Check link list
**************************************************************/
void check_linklist(int Tstep)
{
FILE *listf;
struct TNODE *Tptr;
listf = fopen("Check_linklist.dat","a");
Tptr = CurrT;
fprintf(listf,"Timesteps = %04d\n", Tstep);
while(Tptr != NULL)
{
fprintf(listf,"% 8E %04d\n", Tptr->t_node, Tptr->n_node);
Tptr = Tptr->NextTNODE;
}
fprintf(listf,"========================\n\n");
fclose(listf);
}
/**************************************************************/
#endif

File diff suppressed because it is too large Load diff

765
pn_bh.c
View file

@ -1,765 +0,0 @@
/***************************************************************************/
/*
Coded by : Peter Berczik (on the base of Gabor Kupi original PN code)
Version number : 2.0 SPIN
Last redaction : 2012.V.07. 11:16
*/
int calc_force_pn_BH(double m1, double xx1[], double vv1[], double spin1[],
double m2, double xx2[], double vv2[], double spin2[],
double CCC_NB, double dt_bh,
int usedOrNot[],
double a_pn1[][3], double adot_pn1[][3],
double a_pn2[][3], double adot_pn2[][3])
{
/*
INPUT
m1 - mass of the 1 BH
xx1[0,1,2] - coordinate of the 1 BH
vv1[0,1,2] - velocity of the 1 BH
spin1[0,1,2] - normalized spin of the 1 BH
m2 - mass of the 2 BH
xx2[0,1,2] - coordinate of the 2 BH
vv2[0,1,2] - velocity of the 2 BH
spin2[0,1,2] - normalized spin of the 2 BH
CCC_NB - Speed of light "c" in internal units
dt_BH - timestep of the BH's, needed for the SPIN integration
usedOrNot[PN0, PN1, PN2, PN2.5, PN3, PN3.5, SPIN] - different PN term usage: PN1, PN2, PN2.5, PN3, PN3.5, SPIN
0 1 2 3 4 5 6
OUTPUT
a_pn1 [0 - PN0; 1 - PN1; 2 - PN2; 3 - PN2.5, 4 - PN3, 5 - PN3.5, 6 - SPIN] [3] for the 1 BH
adot_pn1[0 - PN0; 1 - PN1; 2 - PN2; 3 - PN2.5, 4 - PN3, 5 - PN3.5, 6 - SPIN] [3] for the 1 BH
a_pn2 [0 - PN0; 1 - PN1; 2 - PN2; 3 - PN2.5, 4 - PN3, 5 - PN3.5, 6 - SPIN] [3] for the 2 BH
adot_pn2[0 - PN0; 1 - PN1; 2 - PN2; 3 - PN2.5, 4 - PN3, 5 - PN3.5, 6 - SPIN] [3] for the 2 BH
return - 0 if everything OK
- 505 if BH's separation < 4 x (RSwarch1 + RSwarch2)
*/
int j, k;
double PI2 = 9.86960440108935;
double c_1, c_2, c_4, c_5, c_6, c_7, RS_DIST;
double M, eta, r, r2, r3, MOR;
double V1_V22,VWHOLE, RP, RPP, VA;
double N[3], x[3], v[3], A[3];
double A1, B1, A2, B2, A2_5, B2_5, AK2, BK2, AK4, BK4, AK5, BK5;
double A1D, A2D, A2_5D, B1D, B2D, B2_5D, ADK2, BDK2, ADK4, BDK4, ADK5, BDK5;
double A3, B3, A3_5, B3_5, AK6, BK6, AK7, BK7;
double A3D, A3_5D, B3D, B3_5D, ADK6, BDK6, ADK7, BDK7;
int Van_Spin=0;
int Van_QM=0;
double DM, S1[3], SPIN[3][2], S2[3], KSS[3], KSSIG[3], XS[3], XA[3], NCV[3], NCS[3], NCSIG[3],
VCS[3], VCSIG[3], SDNCV, SIGDNCV, NDV, XS2, XA2, NXA, NXS, VDS, VDSIG, NDS, NDSIG,
C1_5[3], C2[3], C2_5[3];
double LABS, LU[3], S1DLU, S2DLU, SU1[3], SV1[3], SS1[3], SS2[3], SU2[3], SV2[3];
double AT[3], NDOT[3], NVDOT, NDOTCV[3], NCA[3];
double SS1aux[3],SS2aux[3],SU[3],SV[3],XAD[3],XSD[3];
double NDOTCS[3], NCSU[3], NDOTCSIG[3], NCSV[3], ACS[3], VCSU[3], ACSIG[3], VCSV[3], SNVDOT,
SIGNVDOT, NSDOT, NSIGDOT, VSDOT, VSIGDOT, NXSDOT, NXADOT;
double C1_5D[3],C2D[3], C2_5D[3];
double ADK, BDK, AD[3], KSAK, KSBK;
double nu, Spin1Abs2, Spin2Abs2, rS1, rS2, S1Dir[3], S2Dir[3], QM[3];
double Spin1Abs, Spin2Abs, QMAux2_1[3], QMAux2_2[3], QMAux1[3] , QMD[3], SPINPrev[3][2], SpinPrev2_1,
SpinPrev2_2, SPSPP1, SPSPP2, Spin1AbsNew2, Spin2AbsNew2, Spin1AbsNew, Spin2AbsNew, S1DirNew[3],
S2DirNew[3], rS1p, rS2p, S1p[3], S2p[3], Np[3];
Van_Spin = usedOrNot[6]; // Van vagy nincs SPIN szamolas...
for(k=0;k<3;k++)
{
SPIN[k][0] = spin1[k];
SPIN[k][1] = spin2[k];
}
for(j=0;j<7;j++)
{
for(k=0;k<3;k++)
{
a_pn1[j][k] = 0.0; adot_pn1[j][k] = 0.0;
a_pn2[j][k] = 0.0; adot_pn2[j][k] = 0.0;
}
}
// Speed of light "c" and its powers
c_1 = CCC_NB;
c_2 = SQR(c_1);
c_4 = SQR(c_2);
c_5 = c_4*c_1;
c_6 = c_5*c_1;
c_7 = c_6*c_1;
// Mass parameters
M = m1+m2;
eta = m1*m2/(M*M);
nu = m1/m2;
for(k=0;k<3;k++)
{
x[k] = xx1[k] - xx2[k];
v[k] = vv1[k] - vv2[k];
}
r2 = SQR(x[0]) + SQR(x[1]) + SQR(x[2]);
r = sqrt(r2);
r3 = r2*r;
MOR = M/r;
V1_V22 = v[0]*v[0]+v[1]*v[1]+v[2]*v[2];
VWHOLE = sqrt(V1_V22);
RP = (x[0]*v[0]+x[1]*v[1]+x[2]*v[2])/r;
// Newton accelerations
for(k=0;k<3;k++) N[k] = x[k]/r;
// PN accelerations
AK2 = 0.0; BK2 = 0.0;
AK4 = 0.0; BK4 = 0.0;
AK5 = 0.0; BK5 = 0.0;
AK6 = 0.0; BK6 = 0.0;
AK7 = 0.0; BK7 = 0.0;
for(k=0;k<3;k++)
{
C1_5[k] = 0.0;
C2[k] = 0.0;
C2_5[k] = 0.0;
QM[k] = 0.0;
}
if(usedOrNot[1] == 1) // PN1 ~1/c^2
{
A1 = 2.0*(2.0+eta)*MOR-(1.0+3.0*eta)*V1_V22 +1.5*eta*RP*RP;
B1 = 2.0*(2.0-eta)*RP;
AK2 = A1/c_2;
BK2 = B1/c_2;
}
if(usedOrNot[2] == 1) // PN2 ~1/c^4
{
A2 = -0.75*(12.0+29.0*eta)*MOR*MOR-eta*(3.0-4.0*eta)*V1_V22*V1_V22-1.875*eta*(1.0-3.0*eta)*RP*RP*RP*RP+0.5*eta*(13.0-4.0*eta)*MOR*V1_V22+(2.0+25.0*eta+2.0*eta*eta)*MOR*RP*RP+1.5*eta*(3.0-4.0*eta)*V1_V22*RP*RP;
B2 = -0.5*RP*((4.0+41.0*eta+8.0*eta*eta)*MOR-eta*(15.0+4.0*eta)*V1_V22+3.0*eta*(3.0+2.0*eta)*RP*RP);
AK4 = A2/c_4;
BK4 = B2/c_4;
}
if(usedOrNot[3] == 1) // PN2.5 ~1/c^5
{
A2_5 = 1.6*eta*MOR*RP*(17.0*MOR/3.0+3.0*V1_V22);
B2_5 = -1.6*eta*MOR*(3.0*MOR+V1_V22);
AK5 = A2_5/c_5;
BK5 = B2_5/c_5;
}
if(usedOrNot[4] == 1) // PN3 ~1/c^6
{
A3 = MOR*MOR*MOR*(16.0+(1399.0/12.0-41.0*PI2/16.0)*eta+
71.0*eta*eta/2.0)+eta*(20827.0/840.0+123.0*PI2/64.0-eta*eta)
*MOR*MOR*V1_V22-(1.0+(22717.0/168.0+615.0*PI2/64.0)*eta+
11.0*eta*eta/8.0-7.0*eta*eta*eta)*MOR*MOR*RP*RP-
0.25*eta*(11.0-49.0*eta+52.0*eta*eta)*V1_V22*V1_V22*V1_V22+
35.0*eta*(1.0-5.0*eta+5.0*eta*eta)*RP*RP*RP*RP*RP*RP/16.0-
0.25*eta*(75.0+32.0*eta-40.0*eta*eta)*MOR*V1_V22*V1_V22-
0.5*eta*(158.0-69.0*eta-60.0*eta*eta)*MOR*RP*RP*RP*RP+
eta*(121.0-16.0*eta-20.0*eta*eta)*MOR*V1_V22*RP*RP+
3.0*eta*(20.0-79.0*eta+60.0*eta*eta)*V1_V22*V1_V22*RP*RP/8.0-
15.0*eta*(4.0-18.0*eta+17.0*eta*eta)*V1_V22*RP*RP*RP*RP/8.0;
B3 = RP*((4.0+(5849.0/840.0+123.0*PI2/32.0)*eta-25.0*eta*eta-
8.0*eta*eta*eta)*MOR*MOR+eta*(65.0-152.0*eta-48.0*eta*eta)*
V1_V22*V1_V22/8.0+15.0*eta*(3.0-8.0*eta-2.0*eta*eta)*RP*RP*RP*RP/8.0+
eta*(15.0+27.0*eta+10.0*eta*eta)*MOR*V1_V22-eta*(329.0+177.0*eta+
108.0*eta*eta)*MOR*RP*RP/6.0-
3.0*eta*(16.0-37.0*eta-16.0*eta*eta)*V1_V22*RP*RP/4.0);
AK6 = A3/c_6;
BK6 = B3/c_6;
}
if(usedOrNot[5] == 1) // PN3.5 ~1/c^7
{
A3_5 = MOR*eta*(V1_V22*V1_V22*(-366.0/35.0-12.0*eta)+V1_V22*RP*RP*(114.0+12.0*eta)-112.0*RP*RP*RP*RP+MOR*(V1_V22*(-692.0/35.0+724.0*eta/15.0)+RP*RP*(-294.0/5.0-376.0*eta/5.0)+MOR*(-3956.0/35.0-184.0*eta/5.0)));
B3_5 = 8.0*eta*MOR*((1325.0+546.0*eta)*MOR*MOR/42.0+(313.0+42.0*eta)*V1_V22*V1_V22/28.0+75.0*RP*RP*RP*RP-(205.0+777.0*eta)*MOR*V1_V22/42.0+(205.0+424.0*eta)*MOR*RP*RP/12.0-3.0*(113.0+2.0*eta)*V1_V22*RP*RP/4.0)/5.0;
AK7 = A3_5/c_7;
BK7 = B3_5/c_7;
}
// Spin accelerations
if(Van_Spin==1)
{
DM = m1 - m2;
Spin1Abs2 = 0.0;
Spin2Abs2 = 0.0;
rS1 = 0.0;
rS2 = 0.0;
for(k=0;k<3;k++)
{
Spin1Abs2 += SPIN[k][0]*SPIN[k][0]; // normalizalt spin
Spin2Abs2 += SPIN[k][1]*SPIN[k][1];
rS1 += N[k]*S1Dir[k];
rS2 += N[k]*S2Dir[k];
S1[k] = SPIN[k][0]*m1*m1/c_1; // fizikai spin
S2[k] = SPIN[k][1]*m2*m2/c_1;
KSS[k] = S1[k]+S2[k];
KSSIG[k] = M*(S2[k]/m2-S1[k]/m1);
XS[k] = 0.5*(SPIN[k][0]+SPIN[k][1]);
XA[k] = 0.5*(SPIN[k][0]-SPIN[k][1]);
}
Spin1Abs = sqrt(Spin1Abs2);
Spin2Abs = sqrt(Spin2Abs2);
for(k=0;k<3;k++)
{
S1Dir[k] = SPIN[k][0]/Spin1Abs;
S2Dir[k] = SPIN[k][1]/Spin2Abs;
}
//NCV crossproduct of N[k] and relative v = N[k]Xv[j]
NCV[0] = N[1]*v[2] - N[2]*v[1];
NCV[1] = N[2]*v[0] - N[0]*v[2];
NCV[2] = N[0]*v[1] - N[1]*v[0];
//NCS crossproduct of N[k] and KSS = N[k]XKSS
NCS[0] = N[1]*KSS[2] - N[2]*KSS[1];
NCS[1] = N[2]*KSS[0] - N[0]*KSS[2];
NCS[2] = N[0]*KSS[1] - N[1]*KSS[0];
//NCSIG crossproduct of N[k] and KSSIG = N[k]XKSSIG
NCSIG[0] = N[1]*KSSIG[2] - N[2]*KSSIG[1];
NCSIG[1] = N[2]*KSSIG[0] - N[0]*KSSIG[2];
NCSIG[2] = N[0]*KSSIG[1] - N[1]*KSSIG[0];
//VCS crossproduct of v[k] and KSS = v[k]XKSS
VCS[0] = v[1]*KSS[2] - v[2]*KSS[1];
VCS[1] = v[2]*KSS[0] - v[0]*KSS[2];
VCS[2] = v[0]*KSS[1] - v[1]*KSS[0];
//VCSIG crossproduct of v[k] and KSSIG = v[k]XKSSIG
VCSIG[0] = v[1]*KSSIG[2] - v[2]*KSSIG[1];
VCSIG[1] = v[2]*KSSIG[0] - v[0]*KSSIG[2];
VCSIG[2] = v[0]*KSSIG[1] - v[1]*KSSIG[0];
SDNCV = KSS[0]*NCV[0]+KSS[1]*NCV[1]+KSS[2]*NCV[2];
SIGDNCV = KSSIG[0]*NCV[0]+KSSIG[1]*NCV[1]+KSSIG[2]*NCV[2];
NDV = N[0]*v[0] + N[1]*v[1] + N[2]*v[2];
XS2 = XS[0]*XS[0]+XS[1]*XS[1]+XS[2]*XS[2];
XA2 = XA[0]*XA[0]+XA[1]*XA[1]+XA[2]*XA[2];
NXA = N[0]*XA[0]+N[1]*XA[1]+N[2]*XA[2];
NXS = N[0]*XS[0]+N[1]*XS[1]+N[2]*XS[2];
VDS = v[0]*KSS[0]+v[1]*KSS[1]+v[2]*KSS[2];
VDSIG = v[0]*KSSIG[0]+v[1]*KSSIG[1]+v[2]*KSSIG[2];
NDS = N[0]*KSS[0]+N[1]*KSS[1]+N[2]*KSS[2];
NDSIG = N[0]*KSSIG[0]+N[1]*KSSIG[1]+N[2]*KSSIG[2];
for(k=0;k<3;k++)
{
C1_5[k] = (N[k]*(12.0*SDNCV+6.0*DM*SIGDNCV/M)+9.0*NDV*NCS[k]+3.0*DM*NDV*NCSIG[k]/M -7.0*VCS[k]-3.0*DM*VCSIG[k]/M)/r3;
C2[k] = -MOR*MOR*MOR/r*3.0*eta*(N[k]*(XS2-XA2-5.0*NXS*NXS+5.0*NXA*NXA)+2.0*(XS[k]*NXS-XA[k]*NXA));
C2_5[k] = (N[k]*(SDNCV*(-30.0*eta*NDV*NDV+24.0*eta*V1_V22-MOR*(38.0+25.0*eta))+DM/M*SIGDNCV*(-15.0*eta*NDV*NDV+12.0*eta*V1_V22
-MOR*(18.0+14.5*eta)))+NDV*v[k]*(SDNCV*(-9.0+9.0*eta)+DM/M* SIGDNCV*(-3.0+6.0*eta))+NCV[k]*(NDV*VDS*(-3.0+3.0*eta)
-8.0*MOR*eta*NDS-DM/M*(4.0*MOR*eta*NDSIG+3.0*NDV*VDSIG))+NDV*NCS[k]*(-22.5*eta*NDV*NDV+21.0*eta*V1_V22-MOR*(25.0+15.0*eta))
+DM/M*NDV*NCSIG[k]*(-15.0*eta*NDV*NDV+12.0*eta*V1_V22-MOR*(9.0+8.5*eta))+VCS[k]*(16.5*eta*NDV*NDV+MOR*(21.0+9.0*eta)
-14.0*eta*V1_V22)+DM/M*VCSIG[k]*(9.0*eta*NDV*NDV-7.0*eta*V1_V22+MOR*(9.0+4.5*eta)))/r3;
if(Van_QM==1)
{
if(m1>m2)
{
QMAux2_1[k] = (1.0-5.0*rS1*rS1)*N[k]+2.0*rS1*S1Dir[k];
QMAux2_2[k] = (1.0-5.0*rS2*rS2)*N[k]+2.0*rS2*S2Dir[k];
QMAux1[k] = Spin1Abs2*QMAux2_1[k]/nu+Spin2Abs2*QMAux2_2[k]*nu;
QM[k] = -1.5*MOR*MOR*MOR*eta*QMAux1[k]/r;
}
else
{
QMAux2_1[k] = (1.0-5.0*rS2*rS2)*N[k]+2.0*rS2*S2Dir[k];
QMAux2_2[k] = (1.0-5.0*rS1*rS1)*N[k]+2.0*rS1*S1Dir[k];
QMAux1[k] = Spin2Abs2*QMAux2_1[k]/nu+Spin1Abs2*QMAux2_2[k]*nu;
QM[k] = -1.5*MOR*MOR*MOR*eta*QMAux1[k]/r;
}
} /* if(Van_QM==1) */
} /* k */
} /* if(Van_Spin==1) */
for(k=0;k<3;k++)
{
if(usedOrNot[0] == 1) // PN0 (Newton) ~1/c^0
{
a_pn1[0][k] = -m2*x[k]/r3;
a_pn2[0][k] = m1*x[k]/r3;
}
if(usedOrNot[1] == 1) // PN1 ~1/c^2
{
a_pn1[1][k] = ((AK2*N[k] + BK2*v[k])/r2)*m2;
a_pn2[1][k] = -((AK2*N[k] + BK2*v[k])/r2)*m1;
}
if(usedOrNot[2] == 1) // PN2 ~1/c^4
{
a_pn1[2][k] = ((AK4*N[k] + BK4*v[k])/r2)*m2;
a_pn2[2][k] = -((AK4*N[k] + BK4*v[k])/r2)*m1;
}
if(usedOrNot[3] == 1) // PN2.5 ~1/c^5
{
a_pn1[3][k] = ((AK5*N[k] + BK5*v[k])/r2)*m2;
a_pn2[3][k] = -((AK5*N[k] + BK5*v[k])/r2)*m1;
}
if(usedOrNot[4] == 1) // PN3 ~1/c^6
{
a_pn1[4][k] = ((AK6*N[k] + BK6*v[k])/r2)*m2;
a_pn2[4][k] = -((AK6*N[k] + BK6*v[k])/r2)*m1;
}
if(usedOrNot[5] == 1) // PN3.5 ~1/c^7
{
a_pn1[5][k] = ((AK7*N[k] + BK7*v[k])/r2)*m2;
a_pn2[5][k] = -((AK7*N[k] + BK7*v[k])/r2)*m1;
}
if(Van_Spin == 1) // All the SPIN terms
{
a_pn1[6][k] += (C1_5[k]/c_2 + C2[k]/c_4 + C2_5[k]/c_4 + QM[k]/c_4)*m2/M;
a_pn2[6][k] += -(C1_5[k]/c_2 + C2[k]/c_4 + C2_5[k]/c_4 + QM[k]/c_4)*m1/M;
}
A[k] = MOR*((AK2+AK4+AK5+AK6+AK7)*N[k] + (BK2+BK4+BK5+BK6+BK7)*v[k])/r + C1_5[k]/c_2 + C2[k]/c_4 + C2_5[k]/c_4 + QM[k]/c_4;
}
// PN accelerations
// PN jerks
for(k=0;k<3;k++)
{
AT[k] = A[k] - MOR*N[k]/r; // miert van AT - ?
}
/*
AT[0] = A[0];
AT[1] = A[1];
AT[2] = A[2];
*/
RPP = V1_V22/r + AT[0]*N[0]+AT[1]*N[1] + AT[2]*N[2] - RP*RP/r;
VA = AT[0]*v[0] + AT[1]*v[1] + AT[2]*v[2];
for(k=0;k<3;k++) NDOT[k] = (v[k]-N[k]*RP)/r;
NVDOT = NDOT[0]*v[0]+NDOT[1]*v[1]+NDOT[2]*v[2]+N[0]*AT[0]+N[1]*AT[1]+N[2]*AT[2];
//NDOTCV crossproduct of NDOT[k] and relative v = NDOT[k]Xv[j]
NDOTCV[0] = NDOT[1]*v[2] - NDOT[2]*v[1];
NDOTCV[1] = NDOT[2]*v[0] - NDOT[0]*v[2];
NDOTCV[2] = NDOT[0]*v[1] - NDOT[1]*v[0];
//NCA crossproduct of N and AT = N[k]XAT[j]
NCA[0] = N[1]*AT[2] - N[2]*AT[1];
NCA[1] = N[2]*AT[0] - N[0]*AT[2];
NCA[2] = N[0]*AT[1] - N[1]*AT[0];
ADK2 = 0.0; BDK2 = 0.0;
ADK4 = 0.0; BDK4 = 0.0;
ADK5 = 0.0; BDK5 = 0.0;
ADK6 = 0.0; BDK6 = 0.0;
ADK7 = 0.0; BDK7 = 0.0;
for(k=0;k<3;k++)
{
C1_5D[k] = 0.0;
C2D[k] = 0.0;
C2_5D[k] = 0.0;
QMD[k] = 0.0;
}
if(usedOrNot[1] == 1) // PN1 ~1/c^2
{
A1D = -2.0*(2.0+eta)*MOR*RP/r - 2.0*(1.0+3.0*eta)*VA + 3.0*eta*RP*RPP;
B1D = 2.0*(2.0-eta)*RPP;
ADK2 = A1D/c_2;
BDK2 = B1D/c_2;
}
if(usedOrNot[2] == 1) // PN2 ~1/c^4
{
A2D = 1.5*(12.0+29.0*eta)*MOR*MOR*RP/r -eta*(3.0-4.0*eta)*4.0*V1_V22*VA - 7.5*eta*(1.0-3.0*eta)*RPP -0.5*eta*(13.0-4.0*eta)*MOR*RP*V1_V22/r+eta*(13.0-4.0*eta)*MOR*VA -(2.0+25.0*eta+2.0*eta*eta)*MOR*RP*RP*RP/r+2.0*(2.0+25.0*eta+2.0*eta*eta)*MOR*RP*RPP + 3.0*eta*(3.0-4.0*eta)*VA*RP*RP + 3.0*eta*(3.0-4.0*eta)*V1_V22*RP*RPP;
B2D = -0.5*RPP*((4.0+41.0*eta+8.0*eta*eta)*MOR - eta*(15.0+4.0*eta)*V1_V22+3.0*eta*(3.0+2.0*eta)*RP*RP) - 0.5*RP*(-(4.0+41.0*eta+8.0*eta*eta)*MOR*RP/r - 2.0*eta*(15.0+4.0*eta)*VA + 6.0*eta*(3.0+2.0*eta)*RP*RPP);
ADK4 = A2D/c_4;
BDK4 = B2D/c_4;
}
if(usedOrNot[3] == 1) // PN2.5 ~1/c^5
{
A2_5D = -1.6*eta*MOR*RP*RP*(17.0/3.0*MOR+3.0*V1_V22)/r +1.6*eta*MOR*RPP*(17.0/3.0*MOR+3.0*V1_V22)+1.6*eta*MOR*RP*(-17.0*MOR*RP/3.0/r+6.0*VA);
B2_5D = 1.6*eta*MOR*RP*(3.0*MOR+V1_V22)/r - 1.6*eta*MOR*(-3.0*MOR*RP/r+2.0*VA);
ADK5 = A2_5D/c_5;
BDK5 = B2_5D/c_5;
}
if(usedOrNot[4] == 1) // PN3 ~1/c^6
{
A3D = 6.0*eta*RP*RP*RP*RP*RP*RPP*(35.0-175.0*eta+175.0*eta*eta)/16.0 + eta*(4.0*RP*RP*RP*RPP*V1_V22 + 2.0*RP*RP*RP*RP*VA)*(-15.0+135.0*eta/2.0-255.0*eta*eta/4.0)/2.0 + eta*(2.0*RP*RPP*V1_V22*V1_V22+4.0*RP*RP*V1_V22*VA)/2.0*(15.0-237.0*eta/2.0+45.0*eta*eta) + 6.0*V1_V22*V1_V22*VA*eta*(-11.0/4.0-49.0*eta/4.0-13.0*eta*eta) + MOR*(4.0*RP*RP*RP*RPP*eta*(-79.0+69.0/2.0*eta+30.0*eta*eta) + eta*(2.0*RP*RPP*V1_V22+2.0*RP*RP*VA)*(121.0-16.0*eta-20.0*eta*eta)+4.0*V1_V22*VA*eta*(-75.0/4.0-8.0*eta+10.0*eta*eta)) - MOR*RP*((-79.0+69.0*eta/2.0+30.0*eta*eta)*RP*RP*RP*RP*eta+eta*RP*RP*V1_V22*(121.0-16.0*eta-20.0*eta*eta)+eta*V1_V22*V1_V22*(-75.0/4.0-8.0*eta+10.0*eta*eta))/r - 2.0*MOR*MOR*RP*(RP*RP*((-1.0-615.0*PI2*eta/64.0)-22717.0*eta/168.0-11.0*eta*eta/8.0+7.0*eta*eta*eta)+eta*V1_V22*((20827.0/840.0+123.0*PI2/64.0)-eta*eta))/r + MOR*MOR*(2.0*RP*RPP*((-1.0-615*PI2*eta/64.0)-22717.0*eta/168.0-11.0*eta*eta/8.0+7*eta*eta*eta)+2.0*eta*VA*((20827.0/840.0 +123.0*PI2/64.0)-eta*eta)) - 3.0*MOR*MOR*MOR*RP*(16.0+(1399.0/12.0-41.0*PI2/16.0)*eta+71.0*eta*eta/2.0)/r;
B3D = 75.0*RP*RP*RP*RP*RPP*eta*(3.0/8.0-eta-.25*eta*eta)+eta*(3.0*RP*RP*RPP*V1_V22+2.0*RP*RP*RP*VA)*(-12.0+111.0*eta/4.0+12.0*eta*eta)+eta*(RPP*V1_V22*V1_V22+4.0*RP*V1_V22*VA)*(65.0/8.0-19.0*eta-6.0*eta*eta)-MOR*RP*(RP*RP*RP*eta*(-329.0/6.0-59.0*eta/2.0-18.0*eta*eta)+RP*V1_V22*eta*(15.0+27.0*eta+10.0*eta*eta))/r+MOR*(3.0*RP*RP*RPP*eta*(-329.0/6.0-59.0*eta/2.0-18.0*eta*eta)+eta*(RPP*V1_V22+2.0*RP*VA)*(15.0+27.0*eta+10.0*eta*eta))-2.0*MOR*MOR*RP*(RP*((4.0+123.0*PI2*eta/32.0)+5849.0*eta/840.0-25.0*eta*eta-8.0*eta*eta*eta))/r+MOR*MOR*(RPP*((4.0+123.0*PI2*eta/32.0)+5849.0/840.0*eta-25.0*eta*eta-8.0*eta*eta*eta));
ADK6 = A3D/c_6;
BDK6 = B3D/c_6;
}
if(usedOrNot[5] == 1) // PN3.5 ~1/c^7
{
A3_5D = MOR*eta*(-RP*(V1_V22*V1_V22*(-366.0/35.0-12.0*eta)+V1_V22*RP*RP*(114.0+12.0*eta)+RP*RP*RP*RP*(-112.0))/r+4.0*V1_V22*VA*(-366.0/35.0-12.0*eta)+2.0*(VA*RP*RP+RP*RPP*V1_V22)*(114.0+12.0*eta)+4.0*RP*RP*RP*RPP*(-112.0)+MOR*(2.0*VA*(-692.0/35.0+724.0*eta/15.0)+2.0*RP*RPP*(-294.0/5.0-376.0*eta/5.0)-2.0*RP*(V1_V22*(-692.0/35.0+724.0*eta/15.0)+RP*RP*(-294.0/5.0-376.0*eta/5.0))/r-3.0*MOR*RP*(-3956.0/35.0-184.0*eta/5.0)/r));
B3_5D = MOR*eta*(4.0*V1_V22*VA*(626.0/35.0+12.0*eta/5.0)+2.0*(VA*RP*RP+V1_V22*RP*RPP)*(-678.0/5.0-12.0*eta/5.0)+4.0*RP*RP*RP*RPP*120.0-RP*(V1_V22*V1_V22*(626.0/35.0+12.0*eta/5.0)+V1_V22*RP*RP*(-678.0/5.0-12.0*eta/5.0)+120.0*RP*RP*RP*RP)/r+MOR*(2.0*VA*(-164.0/21.0-148.0*eta/5.0)+2*RP*RPP*(82.0/3.0+848.0*eta/15.0)-2.0*RP*(V1_V22*(-164.0/21-148.0*eta/5.0)+RP*RP*(82.0/3.0+848.0*eta/15.0))/r-3.0*MOR*RP*(1060.0/21.0+104.0*eta/5.0)/r));
ADK7 = A3_5D/c_7;
BDK7 = B3_5D/c_7;
}
if(Van_Spin==1)
{
//L crossproduct of x[k] and relative v = x[k]Xv[j]
L[0] = x[1]*v[2] - x[2]*v[1];
L[1] = x[2]*v[0] - x[0]*v[2];
L[2] = x[0]*v[1] - x[1]*v[0];
LABS = sqrt(L[0]*L[0]+L[1]*L[1]+L[2]*L[2]);
LU[0] = L[0]/LABS;
LU[1] = L[1]/LABS;
LU[2] = L[2]/LABS;
S1DLU = S1[0]*LU[0]+S1[1]*LU[1]+S1[2]*LU[2];
S2DLU = S2[0]*LU[0]+S2[1]*LU[1]+S2[2]*LU[2];
for(k=0;k<3;k++)
{
SU1[k] = MOR*eta*(N[k]*(-4.0*VDS-2.0*DM/M*VDSIG)+ v[k]*(3.0*NDS+DM/M*NDSIG)+NDV*(2.0*KSS[k]+DM/M*KSSIG[k])) /r;
SV1[k] = MOR*(N[k]*(VDSIG*(-2.0+4.0*eta)-2.0*DM/M*VDS)+ v[k]*(NDSIG*(1.0-eta)+DM/M*NDS)+NDV*(KSSIG[k]*(1.0- 2.0*eta)+ DM/M*KSS[k]))/r;
SS1[k] = 0.5*(L[k]*(4.0+3.0*(m2/m1))+ (S2[k]-3.0*S2DLU*LU[k]))/r3;
SS2[k] = 0.5*(L[k]*(4.0+3.0*(m1/m2))+ (S1[k]-3.0*S1DLU*LU[k]))/r3;
SU2[k] = MOR*eta/r*(N[k]*(VDS*(-2.0*V1_V22+3.0*NDV*NDV- 6.0*eta*NDV*NDV+7.0*MOR-8.0*eta*MOR)-14.0*MOR*NDS*NDV+ DM/M*VDSIG*eta*(-3.0*NDV*NDV-4.0*MOR)+DM/M*MOR*NDSIG*NDV* (2.0-eta/2.))+v[k]*(NDS*(2.0*V1_V22-4.0*eta*V1_V22-3.0*NDV* NDV+7.5*eta*NDV*NDV+4.0*MOR-6.0*eta*MOR)+VDS*NDV*(2.0- 6.0*eta)+ DM/M*NDSIG*(-1.5*eta*V1_V22+3.0*eta*NDV*NDV-MOR-3.5*eta* MOR)-3.0*DM/M*VDSIG*NDV*eta)+KSS[k]*NDV*(V1_V22-2.0*eta* V1_V22-1.5*NDV*NDV+3.0*eta*NDV*NDV-MOR+2.0*eta*MOR)+ DM/M*KSSIG[k]*NDV*(-eta*V1_V22+1.5*eta*NDV*NDV+ (eta-1.)*MOR));
SV2[k] = MOR/r*(N[k]*(VDSIG*eta*(-2.0*V1_V22+6.0*eta*NDV* NDV+(3.0+8.0*eta)*MOR)+MOR*NDSIG*NDV*(2.0-22.5*eta+2.0* eta*eta)+ DM/M*VDS*eta*(-3.0*NDV*NDV-4.0*MOR)+DM/M*MOR*NDS*NDV*(2.0- 0.5*eta))+v[k]*(NDSIG*(0.5*eta*V1_V22+2.0*eta*eta*V1_V22- 4.5*eta*eta*NDV*NDV+(4.5*eta-1.0+8.0*eta*eta)*MOR)+VDSIG*NDV* eta*(6.0*eta-1.)-3.0*DM/M*VDS*NDV*eta+DM/M*NDS*(-1.5* eta*V1_V22+ 3.0*eta*NDV*NDV-(1.0+3.5*eta)*MOR))+KSSIG[k]*NDV*(2.0*eta*eta* V1_V22-3.0*eta*eta*NDV*NDV+(-1.0+4.0*eta-2.0*eta*eta)*MOR)+ DM/M*KSS[k]*NDV*(-eta*V1_V22+1.5*eta*NDV*NDV+(-1.0+eta)* MOR));
}
//SS1 crossproduct of SS1 and S1 = SS1[k]XS1[j]
SS1aux[0] = SS1[1]*S1[2] - SS1[2]*S1[1];
SS1aux[1] = SS1[2]*S1[0] - SS1[0]*S1[2];
SS1aux[2] = SS1[0]*S1[1] - SS1[1]*S1[0];
SS1[0] = SS1aux[0];
SS1[1] = SS1aux[1];
SS1[2] = SS1aux[2];
//SS2 crossproduct of SS2 and S2 = SS2[k]XS2[j]
SS2aux[0] = SS2[1]*S2[2] - SS2[2]*S2[1];
SS2aux[1] = SS2[2]*S2[0] - SS2[0]*S2[2];
SS2aux[2] = SS2[0]*S2[1] - SS2[1]*S2[0];
SS2[0] = SS2aux[0];
SS2[1] = SS2aux[1];
SS2[2] = SS2aux[2];
SPINPrev[0][0] = SPIN[0][0];
SPINPrev[1][0] = SPIN[1][0];
SPINPrev[2][0] = SPIN[2][0];
SPINPrev[0][1] = SPIN[0][1];
SPINPrev[1][1] = SPIN[1][1];
SPINPrev[2][1] = SPIN[2][1];
SpinPrev2_1 = SPINPrev[0][0]*SPINPrev[0][0] + SPINPrev[1][0]*SPINPrev[1][0] + SPINPrev[2][0]*SPINPrev[2][0];
SpinPrev2_2 = SPINPrev[0][1]*SPINPrev[0][1] + SPINPrev[1][1]*SPINPrev[1][1] + SPINPrev[2][1]*SPINPrev[2][1];
SPSPP1 = 0.0;
SPSPP2 = 0.0;
Spin1AbsNew2 = 0.0;
Spin2AbsNew2 = 0.0;
for(k=0;k<3;k++)
{
SU[k] = SU1[k]/c_2 + SU2[k]/c_4 + (SS1[k] + SS2[k])/c_2;
SV[k] = SV1[k]/c_2 + SV2[k]/c_4+M*(SS2[k]/m2-SS1[k]/ m1)/c_2;
KSS[k] = KSS[k] + SU[k]*dt_bh; // integrate for dt_bh timestep
KSSIG[k] = KSSIG[k] + SV[k]*dt_bh;
SPIN[k][0] = m1*(M*KSS[k]-m2*KSSIG[k])/M/M/m1/m1*c_1;
SPIN[k][1] = m2*(M*KSS[k]+m1*KSSIG[k])/M/M/m2/m2*c_1;
Spin1AbsNew2 += SPIN[k][0]*SPIN[k][0];
Spin2AbsNew2 += SPIN[k][1]*SPIN[k][1];
XAD[k] = 0.5/(M*M*m1*m2)*(-SU[k]*M*DM-SV[k]*(m1*m1+m2*m2));
XSD[k] = 0.5/(M*M*m1*m2)*(SU[k]*M*M+SV[k]*(m1*m1-m2*m2));
if(m1>m2)
{
SPSPP1 += SPINPrev[k][0]*(SPIN[k][0]-SPINPrev[k][0])/dt_bh;
SPSPP2 += SPINPrev[k][1]*(SPIN[k][1]-SPINPrev[k][1])/dt_bh;
}
else
{
SPSPP1 += SPINPrev[k][1]*(SPIN[k][1]-SPINPrev[k][1])/dt_bh;
SPSPP2 += SPINPrev[k][0]*(SPIN[k][0]-SPINPrev[k][0])/dt_bh;
}
}
Spin1AbsNew = sqrt(Spin1AbsNew2);
Spin2AbsNew = sqrt(Spin2AbsNew2);
for(k=0;k<3;k++)
{
S1DirNew[k] = SPIN[k][0]/Spin1AbsNew;
S2DirNew[k] = SPIN[k][1]/Spin2AbsNew;
}
//NDOTCS crossproduct of NDOT and KSS = NDOT[k]XKSS[j]
NDOTCS[0] = NDOT[1]*KSS[2] - NDOT[2]*KSS[1];
NDOTCS[1] = NDOT[2]*KSS[0] - NDOT[0]*KSS[2];
NDOTCS[2] = NDOT[0]*KSS[1] - NDOT[1]*KSS[0];
//NCSU crossproduct of N and SU = N[k]XSU[j]
NCSU[0] = N[1]*SU[2] - N[2]*SU[1];
NCSU[1] = N[2]*SU[0] - N[0]*SU[2];
NCSU[2] = N[0]*SU[1] - N[1]*SU[0];
//NDOTCSIG crossproduct of NDOT and KSSIG = NDOT[k]XKSSIG[j]
NDOTCSIG[0] = NDOT[1]*KSSIG[2] - NDOT[2]*KSSIG[1];
NDOTCSIG[1] = NDOT[2]*KSSIG[0] - NDOT[0]*KSSIG[2];
NDOTCSIG[2] = NDOT[0]*KSSIG[1] - NDOT[1]*KSSIG[0];
//NCSV crossproduct of N and SV = N[k]XSV[j]
NCSV[0] = N[1]*SV[2] - N[2]*SV[1];
NCSV[1] = N[2]*SV[0] - N[0]*SV[2];
NCSV[2] = N[0]*SV[1] - N[1]*SV[0];
//ACS crossproduct of AT and KSS = AT[k]XKSS[j]
ACS[0] = AT[1]*KSS[2] - AT[2]*KSS[1];
ACS[1] = AT[2]*KSS[0] - AT[0]*KSS[2];
ACS[2] = AT[0]*KSS[1] - AT[1]*KSS[0];
//VCSU crossproduct of relative v and SU = v[k]XSU[j]
VCSU[0] = v[1]*SU[2] - v[2]*SU[1];
VCSU[1] = v[2]*SU[0] - v[0]*SU[2];
VCSU[2] = v[0]*SU[1] - v[1]*SU[0];
//ACSIG crossproduct of AT and KSSIG = AT[k]XKSSIG[j]
ACSIG[0] = AT[1]*KSSIG[2] - AT[2]*KSSIG[1];
ACSIG[1] = AT[2]*KSSIG[0] - AT[0]*KSSIG[2];
ACSIG[2] = AT[0]*KSSIG[1] - AT[1]*KSSIG[0];
//VCSV crossproduct of relative v and SV = v[k]XSV[j]
VCSV[0] = v[1]*SV[2] - v[2]*SV[1];
VCSV[1] = v[2]*SV[0] - v[0]*SV[2];
VCSV[2] = v[0]*SV[1] - v[1]*SV[0];
SNVDOT = SU[0]*NCV[0]+SU[1]*NCV[1]+SU[2]*NCV[2]+ KSS[0]*NDOTCV[0]+KSS[1]*NDOTCV[1]+KSS[2]*NDOTCV[2]+ KSS[0]*NCA[0]+KSS[1]*NCA[1]+KSS[2]*NCA[2];
SIGNVDOT = SV[0]*NCV[0]+SV[1]*NCV[1]+SV[2]*NCV[2]+ KSSIG[0]*NDOTCV[0]+KSSIG[1]*NDOTCV[1]+KSSIG[2]*NDOTCV[2]+ KSSIG[0]*NCA[0]+KSSIG[1]*NCA[1]+KSSIG[2]*NCA[2];
NSDOT = NDOT[0]*KSS[0]+NDOT[1]*KSS[1]+NDOT[2]*KSS[2]+ N[0]*SU[0]+N[1]*SU[1]+N[2]*SU[2];
NSIGDOT = NDOT[0]*KSSIG[0]+NDOT[1]*KSSIG[1]+NDOT[2]*KSSIG[2]+ N[0]*SV[0]+N[1]*SV[1]+N[2]*SV[2];
VSDOT = AT[0]*KSS[0]+AT[1]*KSS[1]+AT[2]*KSS[2]+ v[0]*SU[0]+v[1]*SU[1]+v[2]*SU[2];
VSIGDOT = AT[0]*KSSIG[0]+AT[1]*KSSIG[1]+AT[2]*KSSIG[2]+ v[0]*SV[0]+v[1]*SV[1]+v[2]*SV[2];
NXSDOT = NDOT[0]*XS[0]+NDOT[1]*XS[1]+NDOT[2]*XS[2]+ N[0]*XSD[0]+N[1]*XSD[1]+N[2]*XSD[2];
NXADOT = NDOT[0]*XA[0]+NDOT[1]*XA[1]+NDOT[2]*XA[2]+ N[0]*XAD[0]+N[1]*XAD[1]+N[2]*XAD[2];
rS1p = -rS1*NDV/r;
rS2p = -rS2*NDV/r;
for(k=0;k<3;k++)
{
S1p[k] = (S1DirNew[k] - S1Dir[k])/dt_bh;
S2p[k] = (S2DirNew[k] - S2Dir[k])/dt_bh;
rS1p += v[k]*S1Dir[k]/r + N[k]*S1p[k];
rS2p += v[k]*S2Dir[k]/r + N[k]*S2p[k];
Np[k] = (v[k] - N[k]*NDV)/r;
}
for(k=0;k<3;k++)
{
C1_5D[k] = -3.0*RP/r*C1_5[k]+(NDOT[k]*(12.0*SDNCV+6.0*DM/M* SIGDNCV)+N[k]*(12.0*SNVDOT+6.0*DM/M*SIGNVDOT)+9.0*NVDOT* NCS[k]+9.0*NDV*(NDOTCS[k]+NCSU[k])+3.0*DM/M*(NVDOT*NCSIG[k]+ NDV*(NDOTCSIG[k]+NCSV[k]))-7.0*(ACS[k]+VCSU[k])-3.0*DM/M* (ACSIG[k]+VCSV[k]))/(r3);
C2D[k] = -4.0*RP/r*C2[k]-MOR*MOR*MOR*3.0*eta/r*(NDOT[k]* (XS2-XA2-5.0*NXS*NXS+5.0*NXA*NXA)+N[k]*(2.0*(XS[0]*XSD[0]+ XS[1]*XSD[1]+XS[2]*XSD[2]-XA[0]*XAD[0]-XA[1]*XAD[1]- XA[2]*XAD[2])-10.0*NXS*NXSDOT+10.0*NXA*NXADOT)+2.0*(XSD[k]* NXS+XS[k]*NXSDOT-XAD[k]*NXA-XA[k]*NXADOT));
C2_5D[k] = -3.0*RP/r*C2_5[k]+(NDOT[k]*(SDNCV*(-30.0*eta* NDV*NDV+24.0*eta*V1_V22-MOR*(38.0+25.0*eta))+DM/M*SIGDNCV* (-15.0*eta*NDV*NDV+12.0*eta*V1_V22-MOR*(18.0+14.5*eta)))+ N[k]*(SNVDOT*(-30.0*eta*NDV*NDV+24.0*eta*V1_V22-MOR* (38.0+25.0*eta))+SDNCV*(-60.0*eta*NDV*NVDOT+48.0*eta*VA+ MOR*RP/r*(38.0+25.0*eta))+DM/M*SIGNVDOT*(-15.0*eta*NDV* NDV+12.0*eta*V1_V22-MOR*(18.0+14.5*eta))+DM/M*SIGDNCV* (-30.0*eta*NDV*NVDOT+24.0*eta*VA+MOR*RP/r*(18.0+14.5*eta)))+ (NVDOT*v[k]+NDV*AT[k])*(SDNCV*(-9.0+9.0*eta)+DM/M*SIGDNCV* (-3.0+6.0*eta))+NDV*v[k]*(SNVDOT*(-9.0+9.0*eta)+DM/M* SIGNVDOT*(-3.0+6.0*eta))+(NDOTCV[k]+NCA[k])*(NDV*VDS*(-3.0+ 3.0*eta)-8.0*MOR*eta*NDS-DM/M*(4.0*MOR*eta*NDSIG+3.0*NDV*VDSIG) )+NCV[k]*((NVDOT*VDS+NDV*VSDOT)*(-3.0+3.0*eta)-8.0*eta*MOR* (NSDOT-RP/r*NDS)-DM/M*(4.0*eta*MOR*(NSIGDOT-RP/r*NDSIG)+ 3.0*(NVDOT*VDSIG+NDV*VSIGDOT)))+(NVDOT*NCS[k]+NDV* (NDOTCS[k]+NCSU[k]))*(-22.5*eta*NDV*NDV+21.0*eta*V1_V22- MOR*(25.0+15.0*eta))+NDV*NCS[k]*(-45.0*eta*NDV*NVDOT+42.0*eta* VA+MOR*RP/r*(25.0+15.0*eta))+DM/M*(NVDOT*NCSIG[k]+NDV* (NDOTCSIG[k]+NCSV[k]))*(-15.0*eta*NDV*NDV+12.0*eta*V1_V22- MOR*(9.0+8.5*eta))+DM/M*NDV*NCSIG[k]*(-30.0*eta*NDV*NVDOT+ 24.0*eta*VA+MOR*RP/r*(9.0+8.5*eta))+(ACS[k]+VCSU[k])* (16.5*eta*NDV*NDV+MOR*(21.0+9.0*eta)-14.0*eta*V1_V22)+ VCS[k]*(33.0*eta*NDV*NVDOT-MOR*RP/r*(21.0+9.0*eta)- 28.0*eta*VA)+DM/M*(ACSIG[k]+VCSV[k])*(9.0*eta*NDV*NDV- 7.0*eta*V1_V22+MOR*(9.0+4.5*eta))+DM/M*VCSIG[k]*(18.0* eta*NDV*NVDOT-14.0*eta*VA-MOR*RP/r*(9.0+4.5*eta)))/ (r3);
if(Van_QM==1)
{
if(m1>m2)
{
QMD[k] = -1.5*MOR*MOR*MOR*eta*(-4.0*RP*QMAux1[k]/r2+( 2.0*(SPSPP1*QMAux2_1[k]/nu+SPSPP2*QMAux2_2[k]*nu) + SpinPrev2_1*(-10.0*rS1*rS1p*N[k]+(1.0-5.0*rS1*rS1)*Np[k]+2.0*rS1p*S1Dir[k]+2.0*rS1*S1p[k])/nu + SpinPrev2_2*(-10.0*rS2*rS2p*N[k]+(1.0-5.0*rS2*rS2)*Np[k]+2.0*rS2p*S2Dir[k]+2.0*rS2*S2p[k])*nu )/r);
}
else
{
QMD[k] = -1.5*MOR*MOR*MOR*eta*(-4.0*RP*QMAux1[k]/r2+( 2.0*(SPSPP2*QMAux2_1[k]/nu+SPSPP1*QMAux2_2[k]*nu) + SpinPrev2_2*(-10.0*rS2*rS2p*N[k]+(1.0-5.0*rS2*rS2)*Np[k]+2.0*rS2p*S2Dir[k]+2.0*rS2*S2p[k])/nu + SpinPrev2_1*(-10.0*rS1*rS1p*N[k]+(1.0-5.0*rS1*rS1)*Np[k]+2.0*rS1p*S1Dir[k]+2.0*rS1*S1p[k])*nu )/r);
}
} /* if(Van_QM==1) */
} /* k */
} /* if(Van_Spin==1) */
ADK = ADK2+ADK4+ADK5+ADK6+ADK7;
BDK = BDK2+BDK4+BDK5+BDK6+BDK7;
KSAK = AK2+AK4+AK5+AK6+AK7;
KSBK = BK2+BK4+BK5+BK6+BK7;
for(k=0;k<3;k++) AD[k] = -2.0*MOR*RP*(KSAK*N[k]+KSBK*v[k])/r2 + MOR*(ADK*N[k]+BDK*v[k])/r + MOR*(KSAK*(v[k]-N[k]*RP)/r+KSBK*AT[k])/r + C1_5D[k]/c_2 + C2D[k]/c_4 +C2_5D[k]/c_4 + QMD[k]/c_4;
for(k=0;k<3;k++) // new values of the BH's spins, returned back to the main program...
{
spin1[k] = SPIN[k][0];
spin2[k] = SPIN[k][1];
}
for(k=0;k<3;k++)
{
if(usedOrNot[0] == 1) // PN0 (Newton) ~1/c^0
{
adot_pn1[0][k] = -m2*(v[k]/r3 - 3.0*RP*x[k]/r2/r2);
adot_pn2[0][k] = m1*(v[k]/r3 - 3.0*RP*x[k]/r2/r2);
}
if(usedOrNot[1] == 1) // PN1 ~1/c^2
{
adot_pn1[1][k] = (-2.0*MOR*RP*(AK2*N[k]+BK2*v[k])/r2 + MOR*(ADK2*N[k]+BDK2*v[k])/r + MOR*(AK2*(v[k]-N[k]*RP)/r+BK2*A[k])/r)*m2/M;
adot_pn2[1][k] = -(-2.0*MOR*RP*(AK2*N[k]+BK2*v[k])/r2 + MOR*(ADK2*N[k]+BDK2*v[k])/r + MOR*(AK2*(v[k]-N[k]*RP)/r+BK2*A[k])/r)*m1/M;
}
if(usedOrNot[2] == 1) // PN2 ~1/c^4
{
adot_pn1[2][k] = (-2.0*MOR*RP*(AK4*N[k]+BK4*v[k])/r2 + MOR*(ADK4*N[k]+BDK4*v[k])/r + MOR*(AK4*(v[k]-N[k]*RP)/r+BK4*A[k])/r)*m2/M;
adot_pn2[2][k] = -(-2.0*MOR*RP*(AK4*N[k]+BK4*v[k])/r2 + MOR*(ADK4*N[k]+BDK4*v[k])/r + MOR*(AK4*(v[k]-N[k]*RP)/r+BK4*A[k])/r)*m1/M;
}
if(usedOrNot[3] == 1) // PN2.5 ~1/c^5
{
adot_pn1[3][k] = (-2.0*MOR*RP*(AK5*N[k]+BK5*v[k])/r2 + MOR*(ADK5*N[k]+BDK5*v[k])/r + MOR*(AK5*(v[k]-N[k]*RP)/r+BK5*A[k])/r)*m2/M;
adot_pn2[3][k] = -(-2.0*MOR*RP*(AK5*N[k]+BK5*v[k])/r2 + MOR*(ADK5*N[k]+BDK5*v[k])/r + MOR*(AK5*(v[k]-N[k]*RP)/r+BK5*A[k])/r)*m1/M;
}
if(usedOrNot[4] == 1) // PN3 ~1/c^6
{
adot_pn1[4][k] = (-2.0*MOR*RP*(AK6*N[k]+BK6*v[k])/r2 + MOR*(ADK6*N[k]+BDK6*v[k])/r + MOR*(AK6*(v[k]-N[k]*RP)/r+BK6*A[k])/r)*m2/M;
adot_pn2[4][k] = -(-2.0*MOR*RP*(AK6*N[k]+BK6*v[k])/r2 + MOR*(ADK6*N[k]+BDK6*v[k])/r + MOR*(AK6*(v[k]-N[k]*RP)/r+BK6*A[k])/r)*m1/M;
}
if(usedOrNot[5] == 1) // PN3.5 ~1/c^7
{
adot_pn1[5][k] = (-2.0*MOR*RP*(AK7*N[k]+BK7*v[k])/r2 + MOR*(ADK7*N[k]+BDK7*v[k])/r + MOR*(AK7*(v[k]-N[k]*RP)/r+BK7*A[k])/r)*m2/M;
adot_pn2[5][k] = -(-2.0*MOR*RP*(AK7*N[k]+BK7*v[k])/r2 + MOR*(ADK7*N[k]+BDK7*v[k])/r + MOR*(AK7*(v[k]-N[k]*RP)/r+BK7*A[k])/r)*m1/M;
}
if(Van_Spin == 1) // All the SPIN terms
{
adot_pn1[6][k] += (C1_5D[k]/c_2 + C2D[k]/c_4 +C2_5D[k]/c_4 + QMD[k]/c_4)*m2/M;
adot_pn2[6][k] += -(C1_5D[k]/c_2 + C2D[k]/c_4 +C2_5D[k]/c_4 + QMD[k]/c_4)*m1/M;
}
}
// PN jerks
// Check RS_DIST conditions !!!
RS_DIST = 4.0*(2.0*m1/c_2 + 2.0*m2/c_2);
if(r < RS_DIST)
{
if(myRank == rootRank)
{
fprintf(stdout,"PN RSDIST: r = %.8E \t RS = %.8E \n", r, RS_DIST);
fflush(stdout);
}
return(505);
}
else
{
return(0);
}
}
/***************************************************************************/

View file

@ -1,275 +0,0 @@
/*****************************************************************************
File Name : "Star Destr.c"
Contents : star "destruction" by tidal field of "live" BH (1 or 2)
Coded by : Peter Berczik
Last redaction : 2010.IX.14 1:43PM
*****************************************************************************/
void star_destr(double time,
int n,
int ind[],
double m[],
double x[][3],
double v[][3],
double pot[],
double a[][3],
double adot[][3],
double t[],
double dt[],
int N,
double m_N[],
double x_N[][3],
double v_N[][3],
double a_N[][3],
double adot_N[][3],
double t_N[],
double *m_bh,
int *num_bh,
int i_bh)
{
int n_end, k_act, N_end;
double R_t, e_kin=0.0, e_pot_BH=0.0, e_pot=0.0, e_corr=0.0;
double eps_bh, eps2, eps_bh2, rsb, rkb2, rks2, xp[3], v_bh[3];
//double vir = 0.6, gamma = 1000.0;
double x_max = 1.0E+03, v_max = 1.0E-08,
a_max = 1.0E-08, adot_max = 1.0E-08;
if( time < t_diss_on ) return;
eps_bh = eps;
eps2 = SQR(eps);
eps_bh2 = SQR(eps_bh);
/*
m_s = 1.0/N;
R_s = 2.52E-08/2.507328103;
R_t = gamma * R_s * pow( 2.0*(*m_bh/m_s), over3 );
*/
R_t = R_TIDAL;
/*
if(myRank == rootRank)
{
printf("%.6E \t %06d %06d %06d \t %.6E \t %.6E %06d \n", time, n, i_bh, ind[i_bh], R_t, *m_bh, *num_bh);
fflush(stdout);
}
*/
#ifdef ADD_BH2
n_end = n-2;
N_end = N-2;
#else
#ifdef ADD_BH1
n_end = n-1;
N_end = N-1;
#endif // ADD_BH1
#endif // ADD_BH2
/*
if(myRank == rootRank)
{
printf("%.6E \t %06d %06d %06d %06d \t %.6E \t %.6E %06d \n", time, n, n_end, i_bh, ind[i_bh], R_t, *m_bh, *num_bh);
fflush(stdout);
}
*/
for(i=0; i<n_end; i++)
{
rsb = sqrt( SQR(x[i][0]-x[i_bh][0]) + SQR(x[i][1]-x[i_bh][1]) + SQR(x[i][2]-x[i_bh][2]) );
// R_t = (R_s/5.848035) * pow( (2.0*(*m_bh)/m_s), over3 );
// if( (r < R_t) && (e_kin < ABS(vir*e_pot)) )
if( (rsb < R_t) && (m[i] != 0.0) )
{
if(myRank == rootRank)
{
out = fopen("accr-data.dat","a");
fprintf(out,"%04d %04d %04d %04d \t %.6E %.6E %.6E \t % .6E % .6E % .6E \t % .6E % .6E % .6E \t % .6E % .6E % .6E \t % .6E % .6E % .6E \t % .6E \t % .6E % .6E % .6E \t % .6E % .6E % .6E \n",
i, ind[i], i_bh, ind[i_bh],
time,
m[i], *m_bh,
x[i][0], x[i][1], x[i][2],
x[i_bh][0], x[i_bh][1], x[i_bh][2],
v[i][0], v[i][1], v[i][2],
v[i_bh][0], v[i_bh][1], v[i_bh][2],
pot[i],
a[i][0], a[i][1], a[i][2],
adot[i][0], adot[i][1], adot[i][2]);
fclose(out);
} /* if(myRank == rootRank) */
v_bh[0] = (m[i] * v[i][0] + *m_bh * v[i_bh][0]) / (m[i] + *m_bh);
v_bh[1] = (m[i] * v[i][1] + *m_bh * v[i_bh][1]) / (m[i] + *m_bh);
v_bh[2] = (m[i] * v[i][2] + *m_bh * v[i_bh][2]) / (m[i] + *m_bh);
e_kin = m[i] * ( SQR(v[i][0]) + SQR(v[i][1]) + SQR(v[i][2]) );
e_kin += *m_bh * ( SQR(v[i_bh][0]) + SQR(v[i_bh][1]) + SQR(v[i_bh][2]) );
e_kin -= (m[i] + *m_bh) * ( SQR(v_bh[0]) + SQR(v_bh[1]) + SQR(v_bh[2]) );
e_kin *= 0.5;
// e_kin = 0.5*m[i] * ( SQR(v[i][0]) + SQR(v[i][1]) + SQR(v[i][2]) - SQR(v[i_bh][0]) - SQR(v[i_bh][1]) - SQR(v[i_bh][2]) );
e_pot_BH = - *m_bh * m[i] / sqrt( SQR(rsb) + eps_bh2 );
tmp = 0.0;
for(k=0; k<N_end; k++)
{
if( k != ind[i] )
{
/* define if k prinadlezhit ACT ili net */
k_act = 0;
for(ii=0; ii<n_end; ii++)
{
if( k == ind[ii] )
{
k_act = 1; break;
}
} /* ii */
/*
if(myRank == rootRank)
{
printf("0: \t %04d %04d \t %04d %04d \n", i, ind[i], k, k_act);
fflush(stdout);
}
*/
if(k_act == 1) /* k prinadlezhit ACT */
{
rkb2 = SQR(x_N[k][0]-x[i_bh][0]) + SQR(x_N[k][1]-x[i_bh][1]) + SQR(x_N[k][2]-x[i_bh][2]);
tmp -= m_N[k]/sqrt( rkb2 + eps_bh2 );
rks2 = SQR(x_N[k][0]-x[i][0]) + SQR(x_N[k][1]-x[i][1]) + SQR(x_N[k][2]-x[i][2]);
tmp += m_N[k]/sqrt( rks2 + eps2 );
}
else /* k ne prinadlezhit ACT */
{
dt_tmp = time - t_N[k];
dt2half = over2*dt_tmp*dt_tmp;
dt3over6 = over3*dt_tmp*dt2half;
xp[0] = x_N[k][0] + v_N[k][0]*dt_tmp + a_N[k][0]*dt2half + adot_N[k][0]*dt3over6;
xp[1] = x_N[k][1] + v_N[k][1]*dt_tmp + a_N[k][1]*dt2half + adot_N[k][1]*dt3over6;
xp[2] = x_N[k][2] + v_N[k][2]*dt_tmp + a_N[k][2]*dt2half + adot_N[k][2]*dt3over6;
rkb2 = SQR(xp[0]-x[i_bh][0]) + SQR(xp[1]-x[i_bh][1]) + SQR(xp[2]-x[i_bh][2]);
tmp -= m_N[k]/sqrt( rkb2 + eps_bh2 );
rks2 = SQR(xp[0]-x[i][0]) + SQR(xp[1]-x[i][1]) + SQR(xp[2]-x[i][2]);
tmp += m_N[k]/sqrt( rks2 + eps2 );
} /* if(k_act == 1) */
/*
if(myRank == rootRank)
{
printf("\t %04d %04d \t %04d \t % .8E \n", k, ind[i], k_act, tmp);
fflush(stdout);
}
*/
} /* if( k != ind[i] ) */
} /* k */
e_pot = - m[i] * tmp;
e_corr = e_kin + e_pot_BH + e_pot;
E_corr += e_corr;
*m_bh += m[i]; // add the star mass to the BH mass
*num_bh = *num_bh + 1;
if(myRank == rootRank)
{
printf("ACCR: %.6E %04d %06d %.4E %.4E %04d %06d %.4E % .4E % .4E % .4E % .4E %.4E %04d \n",
time, i_bh, ind[i_bh], rsb, R_t, i, ind[i],
e_kin, e_pot_BH, e_pot, e_corr, E_corr, *m_bh, *num_bh);
fflush(stdout);
}
v[i_bh][0] = v_bh[0];
v[i_bh][1] = v_bh[1];
v[i_bh][2] = v_bh[2];
// tmp_v = sqrt( SQR(v[i][0]) + SQR(v[i][1]) + SQR(v[i][2]) );
// tmp_a = sqrt( SQR(a[i][0]) + SQR(a[i][1]) + SQR(a[i][2]) );
// tmp_adot = sqrt( SQR(adot[i][0]) + SQR(adot[i][1]) + SQR(adot[i][2]) );
/* for part "i" */
x[i][0] = x_max + 1.0*my_rand2();
x[i][1] = x_max + 1.0*my_rand2();
x[i][2] = x_max + 1.0*my_rand2();
v[i][0] = v_max*my_rand2();
v[i][1] = v_max*my_rand2();
v[i][2] = v_max*my_rand2();
pot[i] = 0.0;
a[i][0] = a_max*my_rand2();
a[i][1] = a_max*my_rand2();
a[i][2] = a_max*my_rand2();
adot[i][0] = adot_max*my_rand2();
adot[i][1] = adot_max*my_rand2();
adot[i][2] = adot_max*my_rand2();
m[i] = 0.0;
t[i] = t[i] + 0.125;
dt[i] = 0.125;
} /* if( (r < R_t) ) */
} /* i */
m[i_bh] = *m_bh;
/*
if(myRank == rootRank)
{
printf("%06d \t %.6E \n", i_bh, m[i_bh]);
fflush(stdout);
}
*/
}
/***************************************************************/
/***************************************************************/
/***************************************************************/

View file

@ -1,286 +0,0 @@
/*****************************************************************************
File Name : "Star Destr EXT.c"
Contents : star "destruction" by tidal field of EXT fixed BH
Coded by : Peter Berczik
Last redaction : 2010.IX.14 1:43PM
*****************************************************************************/
void star_destr_ext(double time,
int n,
int ind[],
double m[],
double x[][3],
double v[][3],
double pot[],
double a[][3],
double adot[][3],
double t[],
double dt[],
int N,
double m_N[],
double x_N[][3],
double v_N[][3],
double a_N[][3],
double adot_N[][3],
double t_N[],
double *m_bh,
int *num_bh)
{
int n_end, k_act, N_end;
double R_t, e_kin=0.0, e_pot_BH=0.0, e_pot=0.0, e_corr=0.0;
double eps_bh, eps_bh2, eps2, rsb, rkb2, rks2, xp[3];
//double vir = 0.6, gamma = 1000.0;
double x_max = 1.0E+03, v_max = 1.0E-08,
a_max = 1.0E-08, adot_max = 1.0E-08;
double a_ext_i[3], adot_ext_i[3];
if(time < t_diss_on) return;
eps2 = SQR(eps);
eps_bh = b_bh;
eps_bh2 = SQR(eps_bh);
/*
m_s = 1.0/N;
R_s = 2.52E-08/2.507328103;
R_t = gamma * R_s * pow( 2.0*(*m_bh/m_s), over3 );
*/
R_t = R_TIDAL;
/*
if(myRank == rootRank)
{
printf("%.6E \t %06d %06d %06d \t %.6E \t %.6E %06d \n", time, n, i_bh, ind[i_bh], R_t, *m_bh, *num_bh);
fflush(stdout);
}
*/
n_end = n;
N_end = N;
/*
if(myRank == rootRank)
{
printf("%.6E \t %06d %06d %06d %06d \t %.6E \t %.6E %06d \n", time, n, n_end, i_bh, ind[i_bh], R_t, *m_bh, *num_bh);
fflush(stdout);
}
*/
for(i=0; i<n_end; i++)
{
rsb = sqrt( SQR(x[i][0]) + SQR(x[i][1]) + SQR(x[i][2]) );
// R_t = (R_s/5.848035) * pow( (2.0*(*m_bh)/m_s), over3 );
// if( (r < R_t) && (e_kin < ABS(vir*e_pot)) )
if( (rsb < R_t) )
{
if(myRank == rootRank)
{
x_ij = x[i][0];
y_ij = x[i][1];
z_ij = x[i][2];
vx_ij = v[i][0];
vy_ij = v[i][1];
vz_ij = v[i][2];
r2 = SQR(x_ij) + SQR(y_ij) + SQR(z_ij) + eps_bh2;
r = sqrt(r2);
rv_ij = vx_ij*x_ij + vy_ij*y_ij + vz_ij*z_ij;
tmp = *m_bh / (r * r2);
a_ext_i[0] = -tmp * x_ij;
a_ext_i[1] = -tmp * y_ij;
a_ext_i[2] = -tmp * z_ij;
adot_ext_i[0] = -tmp * (vx_ij - 3.0*rv_ij * x_ij/r2);
adot_ext_i[1] = -tmp * (vy_ij - 3.0*rv_ij * y_ij/r2);
adot_ext_i[2] = -tmp * (vz_ij - 3.0*rv_ij * z_ij/r2);
out = fopen("accr-data.dat","a");
ii = ind[i];
#ifndef STARDISK
a_drag[ii][0] = 0.0;
a_drag[ii][1] = 0.0;
a_drag[ii][2] = 0.0;
adot_drag[ii][0] = 0.0;
adot_drag[ii][1] = 0.0;
adot_drag[ii][2] = 0.0;
#endif // no STARDISK
fprintf(out, "%04d %04d \t %.6E %.6E \t % .6E % .6E % .6E \t % .6E % .6E % .6E \t % .6E % .6E % .6E \t % .6E % .6E % .6E \t % .6E % .6E % .6E \t % .6E % .6E % .6E \t % .6E % .6E % .6E \t % .6E % .6E % .6E \n",
i, ii,
time_cur, *m_bh,
x[i][0], x[i][1], x[i][2],
v[i][0], v[i][1], v[i][2],
a[i][0], a[i][1], a[i][2],
adot[i][0], adot[i][1], adot[i][2],
a_ext_i[0], a_ext_i[1], a_ext_i[2],
adot_ext_i[0], adot_ext_i[1], adot_ext_i[2],
a_drag[ii][0], a_drag[ii][1], a_drag[ii][2],
adot_drag[ii][0], adot_drag[ii][1], adot_drag[ii][2]);
fclose(out);
} /* if(myRank == rootRank) */
e_kin = 0.5*m[i] * ( SQR(v[i][0]) + SQR(v[i][1]) + SQR(v[i][2]) );
e_pot_BH = - *m_bh * m[i] / sqrt( SQR(rsb) + eps_bh2 );
tmp = 0.0;
for(k=0; k<N_end; k++)
{
if( k != ind[i] )
{
/* define if k prinadlezhit ACT ili net */
k_act = 0;
for(ii=0; ii<n_end; ii++)
{
if(k==ind[ii])
{
k_act=1; break;
}
} /* ii */
/*
if(myRank == rootRank)
{
printf("0: \t %04d %04d \t %04d %04d \n", i, ind[i], k, k_act);
fflush(stdout);
}
*/
if(k_act == 1) /* k prinadlezhit ACT */
{
rkb2 = SQR(x_N[k][0]) + SQR(x_N[k][1]) + SQR(x_N[k][2]);
tmp -= m_N[k]/sqrt( rkb2 + eps_bh2 );
rks2 = SQR(x_N[k][0]-x[i][0]) + SQR(x_N[k][1]-x[i][1]) + SQR(x_N[k][2]-x[i][2]);
tmp += m_N[k]/sqrt( rks2 + eps2 );
}
else /* k ne prinadlezhit ACT */
{
dt_tmp = time - t_N[k];
dt2half = over2*dt_tmp*dt_tmp;
dt3over6 = over3*dt_tmp*dt2half;
xp[0] = x_N[k][0] + v_N[k][0]*dt_tmp + a_N[k][0]*dt2half + adot_N[k][0]*dt3over6;
xp[1] = x_N[k][1] + v_N[k][1]*dt_tmp + a_N[k][1]*dt2half + adot_N[k][1]*dt3over6;
xp[2] = x_N[k][2] + v_N[k][2]*dt_tmp + a_N[k][2]*dt2half + adot_N[k][2]*dt3over6;
rkb2 = SQR(xp[0]) + SQR(xp[1]) + SQR(xp[2]);
tmp -= m_N[k]/sqrt( rkb2 + eps_bh2 );
rks2 = SQR(xp[0]-x[i][0]) + SQR(xp[1]-x[i][1]) + SQR(xp[2]-x[i][2]);
tmp += m_N[k]/sqrt( rks2 + eps2 );
} /* if(k_act == 1) */
/*
if(myRank == rootRank)
{
printf("\t %04d %04d \t %04d \t % .8E \n", k, ind[i], k_act, tmp);
fflush(stdout);
}
*/
} /* if( k != ind[i] ) */
} /* k */
e_pot = - m[i] * tmp;
e_corr = e_kin + e_pot_BH + e_pot;
E_corr += e_corr;
*m_bh += m[i]; // add the star mass to the BH mass
*num_bh = *num_bh + 1;
if(myRank == rootRank)
{
printf("ACCR: %.4E %.4E %.4E %04d %06d %.4E % .4E % .4E % .4E % .4E %.4E %04d \n",
time, rsb, R_t, i, ind[i], e_kin, e_pot_BH, e_pot, e_corr, E_corr, *m_bh, *num_bh);
fflush(stdout);
}
// tmp_v = sqrt( SQR(v[i][0]) + SQR(v[i][1]) + SQR(v[i][2]) );
// tmp_a = sqrt( SQR(a[i][0]) + SQR(a[i][1]) + SQR(a[i][2]) );
// tmp_adot = sqrt( SQR(adot[i][0]) + SQR(adot[i][1]) + SQR(adot[i][2]) );
/* for part "i" */
x[i][0] = x_max + 1.0*my_rand2();
x[i][1] = x_max + 1.0*my_rand2();
x[i][2] = x_max + 1.0*my_rand2();
v[i][0] = v_max*my_rand2();
v[i][1] = v_max*my_rand2();
v[i][2] = v_max*my_rand2();
pot[i] = 0.0;
a[i][0] = a_max*my_rand2();
a[i][1] = a_max*my_rand2();
a[i][2] = a_max*my_rand2();
adot[i][0] = adot_max*my_rand2();
adot[i][1] = adot_max*my_rand2();
adot[i][2] = adot_max*my_rand2();
m[i] = 0.0;
t[i] = t[i] + 0.125;
dt[i] = 0.125;
} /* if( (r < R_t) ) */
} /* i */
}
/***************************************************************/
/***************************************************************/
/***************************************************************/