/***************************************************************************/ /* Coded by : Peter Berczik (on the base of Gabor Kupi original PN code) Version number : 2.0 SPIN Last redaction : 2012.V.07. 11:16 */ int calc_force_pn_BH(double m1, double xx1[], double vv1[], double spin1[], double m2, double xx2[], double vv2[], double spin2[], double CCC_NB, double dt_bh, int usedOrNot[], double a_pn1[][3], double adot_pn1[][3], double a_pn2[][3], double adot_pn2[][3]) { /* INPUT m1 - mass of the 1 BH xx1[0,1,2] - coordinate of the 1 BH vv1[0,1,2] - velocity of the 1 BH spin1[0,1,2] - normalized spin of the 1 BH m2 - mass of the 2 BH xx2[0,1,2] - coordinate of the 2 BH vv2[0,1,2] - velocity of the 2 BH spin2[0,1,2] - normalized spin of the 2 BH CCC_NB - Speed of light "c" in internal units dt_BH - timestep of the BH's, needed for the SPIN integration usedOrNot[PN0, PN1, PN2, PN2.5, PN3, PN3.5, SPIN] - different PN term usage: PN1, PN2, PN2.5, PN3, PN3.5, SPIN 0 1 2 3 4 5 6 OUTPUT a_pn1 [0 - PN0; 1 - PN1; 2 - PN2; 3 - PN2.5, 4 - PN3, 5 - PN3.5, 6 - SPIN] [3] for the 1 BH adot_pn1[0 - PN0; 1 - PN1; 2 - PN2; 3 - PN2.5, 4 - PN3, 5 - PN3.5, 6 - SPIN] [3] for the 1 BH a_pn2 [0 - PN0; 1 - PN1; 2 - PN2; 3 - PN2.5, 4 - PN3, 5 - PN3.5, 6 - SPIN] [3] for the 2 BH adot_pn2[0 - PN0; 1 - PN1; 2 - PN2; 3 - PN2.5, 4 - PN3, 5 - PN3.5, 6 - SPIN] [3] for the 2 BH return - 0 if everything OK - 505 if BH's separation < 4 x (RSwarch1 + RSwarch2) */ int j, k; double PI2 = 9.86960440108935; double c_1, c_2, c_4, c_5, c_6, c_7, RS_DIST; double M, eta, r, r2, r3, MOR; double V1_V22,VWHOLE, RP, RPP, VA; double N[3], x[3], v[3], A[3]; double A1, B1, A2, B2, A2_5, B2_5, AK2, BK2, AK4, BK4, AK5, BK5; double A1D, A2D, A2_5D, B1D, B2D, B2_5D, ADK2, BDK2, ADK4, BDK4, ADK5, BDK5; double A3, B3, A3_5, B3_5, AK6, BK6, AK7, BK7; double A3D, A3_5D, B3D, B3_5D, ADK6, BDK6, ADK7, BDK7; int Van_Spin=0; int Van_QM=0; double DM, S1[3], SPIN[3][2], S2[3], KSS[3], KSSIG[3], XS[3], XA[3], NCV[3], NCS[3], NCSIG[3], VCS[3], VCSIG[3], SDNCV, SIGDNCV, NDV, XS2, XA2, NXA, NXS, VDS, VDSIG, NDS, NDSIG, C1_5[3], C2[3], C2_5[3]; double LABS, LU[3], S1DLU, S2DLU, SU1[3], SV1[3], SS1[3], SS2[3], SU2[3], SV2[3]; double AT[3], NDOT[3], NVDOT, NDOTCV[3], NCA[3]; double SS1aux[3],SS2aux[3],SU[3],SV[3],XAD[3],XSD[3]; double NDOTCS[3], NCSU[3], NDOTCSIG[3], NCSV[3], ACS[3], VCSU[3], ACSIG[3], VCSV[3], SNVDOT, SIGNVDOT, NSDOT, NSIGDOT, VSDOT, VSIGDOT, NXSDOT, NXADOT; double C1_5D[3],C2D[3], C2_5D[3]; double ADK, BDK, AD[3], KSAK, KSBK; double nu, Spin1Abs2, Spin2Abs2, rS1, rS2, S1Dir[3], S2Dir[3], QM[3]; double Spin1Abs, Spin2Abs, QMAux2_1[3], QMAux2_2[3], QMAux1[3] , QMD[3], SPINPrev[3][2], SpinPrev2_1, SpinPrev2_2, SPSPP1, SPSPP2, Spin1AbsNew2, Spin2AbsNew2, Spin1AbsNew, Spin2AbsNew, S1DirNew[3], S2DirNew[3], rS1p, rS2p, S1p[3], S2p[3], Np[3]; Van_Spin = usedOrNot[6]; // Van vagy nincs SPIN szamolas... for(k=0;k<3;k++) { SPIN[k][0] = spin1[k]; SPIN[k][1] = spin2[k]; } for(j=0;j<7;j++) { for(k=0;k<3;k++) { a_pn1[j][k] = 0.0; adot_pn1[j][k] = 0.0; a_pn2[j][k] = 0.0; adot_pn2[j][k] = 0.0; } } // Speed of light "c" and its powers c_1 = CCC_NB; c_2 = SQR(c_1); c_4 = SQR(c_2); c_5 = c_4*c_1; c_6 = c_5*c_1; c_7 = c_6*c_1; // Mass parameters M = m1+m2; eta = m1*m2/(M*M); nu = m1/m2; for(k=0;k<3;k++) { x[k] = xx1[k] - xx2[k]; v[k] = vv1[k] - vv2[k]; } r2 = SQR(x[0]) + SQR(x[1]) + SQR(x[2]); r = sqrt(r2); r3 = r2*r; MOR = M/r; V1_V22 = v[0]*v[0]+v[1]*v[1]+v[2]*v[2]; VWHOLE = sqrt(V1_V22); RP = (x[0]*v[0]+x[1]*v[1]+x[2]*v[2])/r; // Newton accelerations for(k=0;k<3;k++) N[k] = x[k]/r; // PN accelerations AK2 = 0.0; BK2 = 0.0; AK4 = 0.0; BK4 = 0.0; AK5 = 0.0; BK5 = 0.0; AK6 = 0.0; BK6 = 0.0; AK7 = 0.0; BK7 = 0.0; for(k=0;k<3;k++) { C1_5[k] = 0.0; C2[k] = 0.0; C2_5[k] = 0.0; QM[k] = 0.0; } if(usedOrNot[1] == 1) // PN1 ~1/c^2 { A1 = 2.0*(2.0+eta)*MOR-(1.0+3.0*eta)*V1_V22 +1.5*eta*RP*RP; B1 = 2.0*(2.0-eta)*RP; AK2 = A1/c_2; BK2 = B1/c_2; } if(usedOrNot[2] == 1) // PN2 ~1/c^4 { A2 = -0.75*(12.0+29.0*eta)*MOR*MOR-eta*(3.0-4.0*eta)*V1_V22*V1_V22-1.875*eta*(1.0-3.0*eta)*RP*RP*RP*RP+0.5*eta*(13.0-4.0*eta)*MOR*V1_V22+(2.0+25.0*eta+2.0*eta*eta)*MOR*RP*RP+1.5*eta*(3.0-4.0*eta)*V1_V22*RP*RP; B2 = -0.5*RP*((4.0+41.0*eta+8.0*eta*eta)*MOR-eta*(15.0+4.0*eta)*V1_V22+3.0*eta*(3.0+2.0*eta)*RP*RP); AK4 = A2/c_4; BK4 = B2/c_4; } if(usedOrNot[3] == 1) // PN2.5 ~1/c^5 { A2_5 = 1.6*eta*MOR*RP*(17.0*MOR/3.0+3.0*V1_V22); B2_5 = -1.6*eta*MOR*(3.0*MOR+V1_V22); AK5 = A2_5/c_5; BK5 = B2_5/c_5; } if(usedOrNot[4] == 1) // PN3 ~1/c^6 { A3 = MOR*MOR*MOR*(16.0+(1399.0/12.0-41.0*PI2/16.0)*eta+ 71.0*eta*eta/2.0)+eta*(20827.0/840.0+123.0*PI2/64.0-eta*eta) *MOR*MOR*V1_V22-(1.0+(22717.0/168.0+615.0*PI2/64.0)*eta+ 11.0*eta*eta/8.0-7.0*eta*eta*eta)*MOR*MOR*RP*RP- 0.25*eta*(11.0-49.0*eta+52.0*eta*eta)*V1_V22*V1_V22*V1_V22+ 35.0*eta*(1.0-5.0*eta+5.0*eta*eta)*RP*RP*RP*RP*RP*RP/16.0- 0.25*eta*(75.0+32.0*eta-40.0*eta*eta)*MOR*V1_V22*V1_V22- 0.5*eta*(158.0-69.0*eta-60.0*eta*eta)*MOR*RP*RP*RP*RP+ eta*(121.0-16.0*eta-20.0*eta*eta)*MOR*V1_V22*RP*RP+ 3.0*eta*(20.0-79.0*eta+60.0*eta*eta)*V1_V22*V1_V22*RP*RP/8.0- 15.0*eta*(4.0-18.0*eta+17.0*eta*eta)*V1_V22*RP*RP*RP*RP/8.0; B3 = RP*((4.0+(5849.0/840.0+123.0*PI2/32.0)*eta-25.0*eta*eta- 8.0*eta*eta*eta)*MOR*MOR+eta*(65.0-152.0*eta-48.0*eta*eta)* V1_V22*V1_V22/8.0+15.0*eta*(3.0-8.0*eta-2.0*eta*eta)*RP*RP*RP*RP/8.0+ eta*(15.0+27.0*eta+10.0*eta*eta)*MOR*V1_V22-eta*(329.0+177.0*eta+ 108.0*eta*eta)*MOR*RP*RP/6.0- 3.0*eta*(16.0-37.0*eta-16.0*eta*eta)*V1_V22*RP*RP/4.0); AK6 = A3/c_6; BK6 = B3/c_6; } if(usedOrNot[5] == 1) // PN3.5 ~1/c^7 { A3_5 = MOR*eta*(V1_V22*V1_V22*(-366.0/35.0-12.0*eta)+V1_V22*RP*RP*(114.0+12.0*eta)-112.0*RP*RP*RP*RP+MOR*(V1_V22*(-692.0/35.0+724.0*eta/15.0)+RP*RP*(-294.0/5.0-376.0*eta/5.0)+MOR*(-3956.0/35.0-184.0*eta/5.0))); B3_5 = 8.0*eta*MOR*((1325.0+546.0*eta)*MOR*MOR/42.0+(313.0+42.0*eta)*V1_V22*V1_V22/28.0+75.0*RP*RP*RP*RP-(205.0+777.0*eta)*MOR*V1_V22/42.0+(205.0+424.0*eta)*MOR*RP*RP/12.0-3.0*(113.0+2.0*eta)*V1_V22*RP*RP/4.0)/5.0; AK7 = A3_5/c_7; BK7 = B3_5/c_7; } // Spin accelerations if(Van_Spin==1) { DM = m1 - m2; Spin1Abs2 = 0.0; Spin2Abs2 = 0.0; rS1 = 0.0; rS2 = 0.0; for(k=0;k<3;k++) { Spin1Abs2 += SPIN[k][0]*SPIN[k][0]; // normalizalt spin Spin2Abs2 += SPIN[k][1]*SPIN[k][1]; rS1 += N[k]*S1Dir[k]; rS2 += N[k]*S2Dir[k]; S1[k] = SPIN[k][0]*m1*m1/c_1; // fizikai spin S2[k] = SPIN[k][1]*m2*m2/c_1; KSS[k] = S1[k]+S2[k]; KSSIG[k] = M*(S2[k]/m2-S1[k]/m1); XS[k] = 0.5*(SPIN[k][0]+SPIN[k][1]); XA[k] = 0.5*(SPIN[k][0]-SPIN[k][1]); } Spin1Abs = sqrt(Spin1Abs2); Spin2Abs = sqrt(Spin2Abs2); for(k=0;k<3;k++) { S1Dir[k] = SPIN[k][0]/Spin1Abs; S2Dir[k] = SPIN[k][1]/Spin2Abs; } //NCV crossproduct of N[k] and relative v = N[k]Xv[j] NCV[0] = N[1]*v[2] - N[2]*v[1]; NCV[1] = N[2]*v[0] - N[0]*v[2]; NCV[2] = N[0]*v[1] - N[1]*v[0]; //NCS crossproduct of N[k] and KSS = N[k]XKSS NCS[0] = N[1]*KSS[2] - N[2]*KSS[1]; NCS[1] = N[2]*KSS[0] - N[0]*KSS[2]; NCS[2] = N[0]*KSS[1] - N[1]*KSS[0]; //NCSIG crossproduct of N[k] and KSSIG = N[k]XKSSIG NCSIG[0] = N[1]*KSSIG[2] - N[2]*KSSIG[1]; NCSIG[1] = N[2]*KSSIG[0] - N[0]*KSSIG[2]; NCSIG[2] = N[0]*KSSIG[1] - N[1]*KSSIG[0]; //VCS crossproduct of v[k] and KSS = v[k]XKSS VCS[0] = v[1]*KSS[2] - v[2]*KSS[1]; VCS[1] = v[2]*KSS[0] - v[0]*KSS[2]; VCS[2] = v[0]*KSS[1] - v[1]*KSS[0]; //VCSIG crossproduct of v[k] and KSSIG = v[k]XKSSIG VCSIG[0] = v[1]*KSSIG[2] - v[2]*KSSIG[1]; VCSIG[1] = v[2]*KSSIG[0] - v[0]*KSSIG[2]; VCSIG[2] = v[0]*KSSIG[1] - v[1]*KSSIG[0]; SDNCV = KSS[0]*NCV[0]+KSS[1]*NCV[1]+KSS[2]*NCV[2]; SIGDNCV = KSSIG[0]*NCV[0]+KSSIG[1]*NCV[1]+KSSIG[2]*NCV[2]; NDV = N[0]*v[0] + N[1]*v[1] + N[2]*v[2]; XS2 = XS[0]*XS[0]+XS[1]*XS[1]+XS[2]*XS[2]; XA2 = XA[0]*XA[0]+XA[1]*XA[1]+XA[2]*XA[2]; NXA = N[0]*XA[0]+N[1]*XA[1]+N[2]*XA[2]; NXS = N[0]*XS[0]+N[1]*XS[1]+N[2]*XS[2]; VDS = v[0]*KSS[0]+v[1]*KSS[1]+v[2]*KSS[2]; VDSIG = v[0]*KSSIG[0]+v[1]*KSSIG[1]+v[2]*KSSIG[2]; NDS = N[0]*KSS[0]+N[1]*KSS[1]+N[2]*KSS[2]; NDSIG = N[0]*KSSIG[0]+N[1]*KSSIG[1]+N[2]*KSSIG[2]; for(k=0;k<3;k++) { C1_5[k] = (N[k]*(12.0*SDNCV+6.0*DM*SIGDNCV/M)+9.0*NDV*NCS[k]+3.0*DM*NDV*NCSIG[k]/M -7.0*VCS[k]-3.0*DM*VCSIG[k]/M)/r3; C2[k] = -MOR*MOR*MOR/r*3.0*eta*(N[k]*(XS2-XA2-5.0*NXS*NXS+5.0*NXA*NXA)+2.0*(XS[k]*NXS-XA[k]*NXA)); C2_5[k] = (N[k]*(SDNCV*(-30.0*eta*NDV*NDV+24.0*eta*V1_V22-MOR*(38.0+25.0*eta))+DM/M*SIGDNCV*(-15.0*eta*NDV*NDV+12.0*eta*V1_V22 -MOR*(18.0+14.5*eta)))+NDV*v[k]*(SDNCV*(-9.0+9.0*eta)+DM/M* SIGDNCV*(-3.0+6.0*eta))+NCV[k]*(NDV*VDS*(-3.0+3.0*eta) -8.0*MOR*eta*NDS-DM/M*(4.0*MOR*eta*NDSIG+3.0*NDV*VDSIG))+NDV*NCS[k]*(-22.5*eta*NDV*NDV+21.0*eta*V1_V22-MOR*(25.0+15.0*eta)) +DM/M*NDV*NCSIG[k]*(-15.0*eta*NDV*NDV+12.0*eta*V1_V22-MOR*(9.0+8.5*eta))+VCS[k]*(16.5*eta*NDV*NDV+MOR*(21.0+9.0*eta) -14.0*eta*V1_V22)+DM/M*VCSIG[k]*(9.0*eta*NDV*NDV-7.0*eta*V1_V22+MOR*(9.0+4.5*eta)))/r3; if(Van_QM==1) { if(m1>m2) { QMAux2_1[k] = (1.0-5.0*rS1*rS1)*N[k]+2.0*rS1*S1Dir[k]; QMAux2_2[k] = (1.0-5.0*rS2*rS2)*N[k]+2.0*rS2*S2Dir[k]; QMAux1[k] = Spin1Abs2*QMAux2_1[k]/nu+Spin2Abs2*QMAux2_2[k]*nu; QM[k] = -1.5*MOR*MOR*MOR*eta*QMAux1[k]/r; } else { QMAux2_1[k] = (1.0-5.0*rS2*rS2)*N[k]+2.0*rS2*S2Dir[k]; QMAux2_2[k] = (1.0-5.0*rS1*rS1)*N[k]+2.0*rS1*S1Dir[k]; QMAux1[k] = Spin2Abs2*QMAux2_1[k]/nu+Spin1Abs2*QMAux2_2[k]*nu; QM[k] = -1.5*MOR*MOR*MOR*eta*QMAux1[k]/r; } } /* if(Van_QM==1) */ } /* k */ } /* if(Van_Spin==1) */ for(k=0;k<3;k++) { if(usedOrNot[0] == 1) // PN0 (Newton) ~1/c^0 { a_pn1[0][k] = -m2*x[k]/r3; a_pn2[0][k] = m1*x[k]/r3; } if(usedOrNot[1] == 1) // PN1 ~1/c^2 { a_pn1[1][k] = ((AK2*N[k] + BK2*v[k])/r2)*m2; a_pn2[1][k] = -((AK2*N[k] + BK2*v[k])/r2)*m1; } if(usedOrNot[2] == 1) // PN2 ~1/c^4 { a_pn1[2][k] = ((AK4*N[k] + BK4*v[k])/r2)*m2; a_pn2[2][k] = -((AK4*N[k] + BK4*v[k])/r2)*m1; } if(usedOrNot[3] == 1) // PN2.5 ~1/c^5 { a_pn1[3][k] = ((AK5*N[k] + BK5*v[k])/r2)*m2; a_pn2[3][k] = -((AK5*N[k] + BK5*v[k])/r2)*m1; } if(usedOrNot[4] == 1) // PN3 ~1/c^6 { a_pn1[4][k] = ((AK6*N[k] + BK6*v[k])/r2)*m2; a_pn2[4][k] = -((AK6*N[k] + BK6*v[k])/r2)*m1; } if(usedOrNot[5] == 1) // PN3.5 ~1/c^7 { a_pn1[5][k] = ((AK7*N[k] + BK7*v[k])/r2)*m2; a_pn2[5][k] = -((AK7*N[k] + BK7*v[k])/r2)*m1; } if(Van_Spin == 1) // All the SPIN terms { a_pn1[6][k] += (C1_5[k]/c_2 + C2[k]/c_4 + C2_5[k]/c_4 + QM[k]/c_4)*m2/M; a_pn2[6][k] += -(C1_5[k]/c_2 + C2[k]/c_4 + C2_5[k]/c_4 + QM[k]/c_4)*m1/M; } A[k] = MOR*((AK2+AK4+AK5+AK6+AK7)*N[k] + (BK2+BK4+BK5+BK6+BK7)*v[k])/r + C1_5[k]/c_2 + C2[k]/c_4 + C2_5[k]/c_4 + QM[k]/c_4; } // PN accelerations // PN jerks for(k=0;k<3;k++) { AT[k] = A[k] - MOR*N[k]/r; // miert van AT - ? } /* AT[0] = A[0]; AT[1] = A[1]; AT[2] = A[2]; */ RPP = V1_V22/r + AT[0]*N[0]+AT[1]*N[1] + AT[2]*N[2] - RP*RP/r; VA = AT[0]*v[0] + AT[1]*v[1] + AT[2]*v[2]; for(k=0;k<3;k++) NDOT[k] = (v[k]-N[k]*RP)/r; NVDOT = NDOT[0]*v[0]+NDOT[1]*v[1]+NDOT[2]*v[2]+N[0]*AT[0]+N[1]*AT[1]+N[2]*AT[2]; //NDOTCV crossproduct of NDOT[k] and relative v = NDOT[k]Xv[j] NDOTCV[0] = NDOT[1]*v[2] - NDOT[2]*v[1]; NDOTCV[1] = NDOT[2]*v[0] - NDOT[0]*v[2]; NDOTCV[2] = NDOT[0]*v[1] - NDOT[1]*v[0]; //NCA crossproduct of N and AT = N[k]XAT[j] NCA[0] = N[1]*AT[2] - N[2]*AT[1]; NCA[1] = N[2]*AT[0] - N[0]*AT[2]; NCA[2] = N[0]*AT[1] - N[1]*AT[0]; ADK2 = 0.0; BDK2 = 0.0; ADK4 = 0.0; BDK4 = 0.0; ADK5 = 0.0; BDK5 = 0.0; ADK6 = 0.0; BDK6 = 0.0; ADK7 = 0.0; BDK7 = 0.0; for(k=0;k<3;k++) { C1_5D[k] = 0.0; C2D[k] = 0.0; C2_5D[k] = 0.0; QMD[k] = 0.0; } if(usedOrNot[1] == 1) // PN1 ~1/c^2 { A1D = -2.0*(2.0+eta)*MOR*RP/r - 2.0*(1.0+3.0*eta)*VA + 3.0*eta*RP*RPP; B1D = 2.0*(2.0-eta)*RPP; ADK2 = A1D/c_2; BDK2 = B1D/c_2; } if(usedOrNot[2] == 1) // PN2 ~1/c^4 { A2D = 1.5*(12.0+29.0*eta)*MOR*MOR*RP/r -eta*(3.0-4.0*eta)*4.0*V1_V22*VA - 7.5*eta*(1.0-3.0*eta)*RPP -0.5*eta*(13.0-4.0*eta)*MOR*RP*V1_V22/r+eta*(13.0-4.0*eta)*MOR*VA -(2.0+25.0*eta+2.0*eta*eta)*MOR*RP*RP*RP/r+2.0*(2.0+25.0*eta+2.0*eta*eta)*MOR*RP*RPP + 3.0*eta*(3.0-4.0*eta)*VA*RP*RP + 3.0*eta*(3.0-4.0*eta)*V1_V22*RP*RPP; B2D = -0.5*RPP*((4.0+41.0*eta+8.0*eta*eta)*MOR - eta*(15.0+4.0*eta)*V1_V22+3.0*eta*(3.0+2.0*eta)*RP*RP) - 0.5*RP*(-(4.0+41.0*eta+8.0*eta*eta)*MOR*RP/r - 2.0*eta*(15.0+4.0*eta)*VA + 6.0*eta*(3.0+2.0*eta)*RP*RPP); ADK4 = A2D/c_4; BDK4 = B2D/c_4; } if(usedOrNot[3] == 1) // PN2.5 ~1/c^5 { A2_5D = -1.6*eta*MOR*RP*RP*(17.0/3.0*MOR+3.0*V1_V22)/r +1.6*eta*MOR*RPP*(17.0/3.0*MOR+3.0*V1_V22)+1.6*eta*MOR*RP*(-17.0*MOR*RP/3.0/r+6.0*VA); B2_5D = 1.6*eta*MOR*RP*(3.0*MOR+V1_V22)/r - 1.6*eta*MOR*(-3.0*MOR*RP/r+2.0*VA); ADK5 = A2_5D/c_5; BDK5 = B2_5D/c_5; } if(usedOrNot[4] == 1) // PN3 ~1/c^6 { A3D = 6.0*eta*RP*RP*RP*RP*RP*RPP*(35.0-175.0*eta+175.0*eta*eta)/16.0 + eta*(4.0*RP*RP*RP*RPP*V1_V22 + 2.0*RP*RP*RP*RP*VA)*(-15.0+135.0*eta/2.0-255.0*eta*eta/4.0)/2.0 + eta*(2.0*RP*RPP*V1_V22*V1_V22+4.0*RP*RP*V1_V22*VA)/2.0*(15.0-237.0*eta/2.0+45.0*eta*eta) + 6.0*V1_V22*V1_V22*VA*eta*(-11.0/4.0-49.0*eta/4.0-13.0*eta*eta) + MOR*(4.0*RP*RP*RP*RPP*eta*(-79.0+69.0/2.0*eta+30.0*eta*eta) + eta*(2.0*RP*RPP*V1_V22+2.0*RP*RP*VA)*(121.0-16.0*eta-20.0*eta*eta)+4.0*V1_V22*VA*eta*(-75.0/4.0-8.0*eta+10.0*eta*eta)) - MOR*RP*((-79.0+69.0*eta/2.0+30.0*eta*eta)*RP*RP*RP*RP*eta+eta*RP*RP*V1_V22*(121.0-16.0*eta-20.0*eta*eta)+eta*V1_V22*V1_V22*(-75.0/4.0-8.0*eta+10.0*eta*eta))/r - 2.0*MOR*MOR*RP*(RP*RP*((-1.0-615.0*PI2*eta/64.0)-22717.0*eta/168.0-11.0*eta*eta/8.0+7.0*eta*eta*eta)+eta*V1_V22*((20827.0/840.0+123.0*PI2/64.0)-eta*eta))/r + MOR*MOR*(2.0*RP*RPP*((-1.0-615*PI2*eta/64.0)-22717.0*eta/168.0-11.0*eta*eta/8.0+7*eta*eta*eta)+2.0*eta*VA*((20827.0/840.0 +123.0*PI2/64.0)-eta*eta)) - 3.0*MOR*MOR*MOR*RP*(16.0+(1399.0/12.0-41.0*PI2/16.0)*eta+71.0*eta*eta/2.0)/r; B3D = 75.0*RP*RP*RP*RP*RPP*eta*(3.0/8.0-eta-.25*eta*eta)+eta*(3.0*RP*RP*RPP*V1_V22+2.0*RP*RP*RP*VA)*(-12.0+111.0*eta/4.0+12.0*eta*eta)+eta*(RPP*V1_V22*V1_V22+4.0*RP*V1_V22*VA)*(65.0/8.0-19.0*eta-6.0*eta*eta)-MOR*RP*(RP*RP*RP*eta*(-329.0/6.0-59.0*eta/2.0-18.0*eta*eta)+RP*V1_V22*eta*(15.0+27.0*eta+10.0*eta*eta))/r+MOR*(3.0*RP*RP*RPP*eta*(-329.0/6.0-59.0*eta/2.0-18.0*eta*eta)+eta*(RPP*V1_V22+2.0*RP*VA)*(15.0+27.0*eta+10.0*eta*eta))-2.0*MOR*MOR*RP*(RP*((4.0+123.0*PI2*eta/32.0)+5849.0*eta/840.0-25.0*eta*eta-8.0*eta*eta*eta))/r+MOR*MOR*(RPP*((4.0+123.0*PI2*eta/32.0)+5849.0/840.0*eta-25.0*eta*eta-8.0*eta*eta*eta)); ADK6 = A3D/c_6; BDK6 = B3D/c_6; } if(usedOrNot[5] == 1) // PN3.5 ~1/c^7 { A3_5D = MOR*eta*(-RP*(V1_V22*V1_V22*(-366.0/35.0-12.0*eta)+V1_V22*RP*RP*(114.0+12.0*eta)+RP*RP*RP*RP*(-112.0))/r+4.0*V1_V22*VA*(-366.0/35.0-12.0*eta)+2.0*(VA*RP*RP+RP*RPP*V1_V22)*(114.0+12.0*eta)+4.0*RP*RP*RP*RPP*(-112.0)+MOR*(2.0*VA*(-692.0/35.0+724.0*eta/15.0)+2.0*RP*RPP*(-294.0/5.0-376.0*eta/5.0)-2.0*RP*(V1_V22*(-692.0/35.0+724.0*eta/15.0)+RP*RP*(-294.0/5.0-376.0*eta/5.0))/r-3.0*MOR*RP*(-3956.0/35.0-184.0*eta/5.0)/r)); B3_5D = MOR*eta*(4.0*V1_V22*VA*(626.0/35.0+12.0*eta/5.0)+2.0*(VA*RP*RP+V1_V22*RP*RPP)*(-678.0/5.0-12.0*eta/5.0)+4.0*RP*RP*RP*RPP*120.0-RP*(V1_V22*V1_V22*(626.0/35.0+12.0*eta/5.0)+V1_V22*RP*RP*(-678.0/5.0-12.0*eta/5.0)+120.0*RP*RP*RP*RP)/r+MOR*(2.0*VA*(-164.0/21.0-148.0*eta/5.0)+2*RP*RPP*(82.0/3.0+848.0*eta/15.0)-2.0*RP*(V1_V22*(-164.0/21-148.0*eta/5.0)+RP*RP*(82.0/3.0+848.0*eta/15.0))/r-3.0*MOR*RP*(1060.0/21.0+104.0*eta/5.0)/r)); ADK7 = A3_5D/c_7; BDK7 = B3_5D/c_7; } if(Van_Spin==1) { //L crossproduct of x[k] and relative v = x[k]Xv[j] L[0] = x[1]*v[2] - x[2]*v[1]; L[1] = x[2]*v[0] - x[0]*v[2]; L[2] = x[0]*v[1] - x[1]*v[0]; LABS = sqrt(L[0]*L[0]+L[1]*L[1]+L[2]*L[2]); LU[0] = L[0]/LABS; LU[1] = L[1]/LABS; LU[2] = L[2]/LABS; S1DLU = S1[0]*LU[0]+S1[1]*LU[1]+S1[2]*LU[2]; S2DLU = S2[0]*LU[0]+S2[1]*LU[1]+S2[2]*LU[2]; for(k=0;k<3;k++) { SU1[k] = MOR*eta*(N[k]*(-4.0*VDS-2.0*DM/M*VDSIG)+ v[k]*(3.0*NDS+DM/M*NDSIG)+NDV*(2.0*KSS[k]+DM/M*KSSIG[k])) /r; SV1[k] = MOR*(N[k]*(VDSIG*(-2.0+4.0*eta)-2.0*DM/M*VDS)+ v[k]*(NDSIG*(1.0-eta)+DM/M*NDS)+NDV*(KSSIG[k]*(1.0- 2.0*eta)+ DM/M*KSS[k]))/r; SS1[k] = 0.5*(L[k]*(4.0+3.0*(m2/m1))+ (S2[k]-3.0*S2DLU*LU[k]))/r3; SS2[k] = 0.5*(L[k]*(4.0+3.0*(m1/m2))+ (S1[k]-3.0*S1DLU*LU[k]))/r3; SU2[k] = MOR*eta/r*(N[k]*(VDS*(-2.0*V1_V22+3.0*NDV*NDV- 6.0*eta*NDV*NDV+7.0*MOR-8.0*eta*MOR)-14.0*MOR*NDS*NDV+ DM/M*VDSIG*eta*(-3.0*NDV*NDV-4.0*MOR)+DM/M*MOR*NDSIG*NDV* (2.0-eta/2.))+v[k]*(NDS*(2.0*V1_V22-4.0*eta*V1_V22-3.0*NDV* NDV+7.5*eta*NDV*NDV+4.0*MOR-6.0*eta*MOR)+VDS*NDV*(2.0- 6.0*eta)+ DM/M*NDSIG*(-1.5*eta*V1_V22+3.0*eta*NDV*NDV-MOR-3.5*eta* MOR)-3.0*DM/M*VDSIG*NDV*eta)+KSS[k]*NDV*(V1_V22-2.0*eta* V1_V22-1.5*NDV*NDV+3.0*eta*NDV*NDV-MOR+2.0*eta*MOR)+ DM/M*KSSIG[k]*NDV*(-eta*V1_V22+1.5*eta*NDV*NDV+ (eta-1.)*MOR)); SV2[k] = MOR/r*(N[k]*(VDSIG*eta*(-2.0*V1_V22+6.0*eta*NDV* NDV+(3.0+8.0*eta)*MOR)+MOR*NDSIG*NDV*(2.0-22.5*eta+2.0* eta*eta)+ DM/M*VDS*eta*(-3.0*NDV*NDV-4.0*MOR)+DM/M*MOR*NDS*NDV*(2.0- 0.5*eta))+v[k]*(NDSIG*(0.5*eta*V1_V22+2.0*eta*eta*V1_V22- 4.5*eta*eta*NDV*NDV+(4.5*eta-1.0+8.0*eta*eta)*MOR)+VDSIG*NDV* eta*(6.0*eta-1.)-3.0*DM/M*VDS*NDV*eta+DM/M*NDS*(-1.5* eta*V1_V22+ 3.0*eta*NDV*NDV-(1.0+3.5*eta)*MOR))+KSSIG[k]*NDV*(2.0*eta*eta* V1_V22-3.0*eta*eta*NDV*NDV+(-1.0+4.0*eta-2.0*eta*eta)*MOR)+ DM/M*KSS[k]*NDV*(-eta*V1_V22+1.5*eta*NDV*NDV+(-1.0+eta)* MOR)); } //SS1 crossproduct of SS1 and S1 = SS1[k]XS1[j] SS1aux[0] = SS1[1]*S1[2] - SS1[2]*S1[1]; SS1aux[1] = SS1[2]*S1[0] - SS1[0]*S1[2]; SS1aux[2] = SS1[0]*S1[1] - SS1[1]*S1[0]; SS1[0] = SS1aux[0]; SS1[1] = SS1aux[1]; SS1[2] = SS1aux[2]; //SS2 crossproduct of SS2 and S2 = SS2[k]XS2[j] SS2aux[0] = SS2[1]*S2[2] - SS2[2]*S2[1]; SS2aux[1] = SS2[2]*S2[0] - SS2[0]*S2[2]; SS2aux[2] = SS2[0]*S2[1] - SS2[1]*S2[0]; SS2[0] = SS2aux[0]; SS2[1] = SS2aux[1]; SS2[2] = SS2aux[2]; SPINPrev[0][0] = SPIN[0][0]; SPINPrev[1][0] = SPIN[1][0]; SPINPrev[2][0] = SPIN[2][0]; SPINPrev[0][1] = SPIN[0][1]; SPINPrev[1][1] = SPIN[1][1]; SPINPrev[2][1] = SPIN[2][1]; SpinPrev2_1 = SPINPrev[0][0]*SPINPrev[0][0] + SPINPrev[1][0]*SPINPrev[1][0] + SPINPrev[2][0]*SPINPrev[2][0]; SpinPrev2_2 = SPINPrev[0][1]*SPINPrev[0][1] + SPINPrev[1][1]*SPINPrev[1][1] + SPINPrev[2][1]*SPINPrev[2][1]; SPSPP1 = 0.0; SPSPP2 = 0.0; Spin1AbsNew2 = 0.0; Spin2AbsNew2 = 0.0; for(k=0;k<3;k++) { SU[k] = SU1[k]/c_2 + SU2[k]/c_4 + (SS1[k] + SS2[k])/c_2; SV[k] = SV1[k]/c_2 + SV2[k]/c_4+M*(SS2[k]/m2-SS1[k]/ m1)/c_2; KSS[k] = KSS[k] + SU[k]*dt_bh; // integrate for dt_bh timestep KSSIG[k] = KSSIG[k] + SV[k]*dt_bh; SPIN[k][0] = m1*(M*KSS[k]-m2*KSSIG[k])/M/M/m1/m1*c_1; SPIN[k][1] = m2*(M*KSS[k]+m1*KSSIG[k])/M/M/m2/m2*c_1; Spin1AbsNew2 += SPIN[k][0]*SPIN[k][0]; Spin2AbsNew2 += SPIN[k][1]*SPIN[k][1]; XAD[k] = 0.5/(M*M*m1*m2)*(-SU[k]*M*DM-SV[k]*(m1*m1+m2*m2)); XSD[k] = 0.5/(M*M*m1*m2)*(SU[k]*M*M+SV[k]*(m1*m1-m2*m2)); if(m1>m2) { SPSPP1 += SPINPrev[k][0]*(SPIN[k][0]-SPINPrev[k][0])/dt_bh; SPSPP2 += SPINPrev[k][1]*(SPIN[k][1]-SPINPrev[k][1])/dt_bh; } else { SPSPP1 += SPINPrev[k][1]*(SPIN[k][1]-SPINPrev[k][1])/dt_bh; SPSPP2 += SPINPrev[k][0]*(SPIN[k][0]-SPINPrev[k][0])/dt_bh; } } Spin1AbsNew = sqrt(Spin1AbsNew2); Spin2AbsNew = sqrt(Spin2AbsNew2); for(k=0;k<3;k++) { S1DirNew[k] = SPIN[k][0]/Spin1AbsNew; S2DirNew[k] = SPIN[k][1]/Spin2AbsNew; } //NDOTCS crossproduct of NDOT and KSS = NDOT[k]XKSS[j] NDOTCS[0] = NDOT[1]*KSS[2] - NDOT[2]*KSS[1]; NDOTCS[1] = NDOT[2]*KSS[0] - NDOT[0]*KSS[2]; NDOTCS[2] = NDOT[0]*KSS[1] - NDOT[1]*KSS[0]; //NCSU crossproduct of N and SU = N[k]XSU[j] NCSU[0] = N[1]*SU[2] - N[2]*SU[1]; NCSU[1] = N[2]*SU[0] - N[0]*SU[2]; NCSU[2] = N[0]*SU[1] - N[1]*SU[0]; //NDOTCSIG crossproduct of NDOT and KSSIG = NDOT[k]XKSSIG[j] NDOTCSIG[0] = NDOT[1]*KSSIG[2] - NDOT[2]*KSSIG[1]; NDOTCSIG[1] = NDOT[2]*KSSIG[0] - NDOT[0]*KSSIG[2]; NDOTCSIG[2] = NDOT[0]*KSSIG[1] - NDOT[1]*KSSIG[0]; //NCSV crossproduct of N and SV = N[k]XSV[j] NCSV[0] = N[1]*SV[2] - N[2]*SV[1]; NCSV[1] = N[2]*SV[0] - N[0]*SV[2]; NCSV[2] = N[0]*SV[1] - N[1]*SV[0]; //ACS crossproduct of AT and KSS = AT[k]XKSS[j] ACS[0] = AT[1]*KSS[2] - AT[2]*KSS[1]; ACS[1] = AT[2]*KSS[0] - AT[0]*KSS[2]; ACS[2] = AT[0]*KSS[1] - AT[1]*KSS[0]; //VCSU crossproduct of relative v and SU = v[k]XSU[j] VCSU[0] = v[1]*SU[2] - v[2]*SU[1]; VCSU[1] = v[2]*SU[0] - v[0]*SU[2]; VCSU[2] = v[0]*SU[1] - v[1]*SU[0]; //ACSIG crossproduct of AT and KSSIG = AT[k]XKSSIG[j] ACSIG[0] = AT[1]*KSSIG[2] - AT[2]*KSSIG[1]; ACSIG[1] = AT[2]*KSSIG[0] - AT[0]*KSSIG[2]; ACSIG[2] = AT[0]*KSSIG[1] - AT[1]*KSSIG[0]; //VCSV crossproduct of relative v and SV = v[k]XSV[j] VCSV[0] = v[1]*SV[2] - v[2]*SV[1]; VCSV[1] = v[2]*SV[0] - v[0]*SV[2]; VCSV[2] = v[0]*SV[1] - v[1]*SV[0]; SNVDOT = SU[0]*NCV[0]+SU[1]*NCV[1]+SU[2]*NCV[2]+ KSS[0]*NDOTCV[0]+KSS[1]*NDOTCV[1]+KSS[2]*NDOTCV[2]+ KSS[0]*NCA[0]+KSS[1]*NCA[1]+KSS[2]*NCA[2]; SIGNVDOT = SV[0]*NCV[0]+SV[1]*NCV[1]+SV[2]*NCV[2]+ KSSIG[0]*NDOTCV[0]+KSSIG[1]*NDOTCV[1]+KSSIG[2]*NDOTCV[2]+ KSSIG[0]*NCA[0]+KSSIG[1]*NCA[1]+KSSIG[2]*NCA[2]; NSDOT = NDOT[0]*KSS[0]+NDOT[1]*KSS[1]+NDOT[2]*KSS[2]+ N[0]*SU[0]+N[1]*SU[1]+N[2]*SU[2]; NSIGDOT = NDOT[0]*KSSIG[0]+NDOT[1]*KSSIG[1]+NDOT[2]*KSSIG[2]+ N[0]*SV[0]+N[1]*SV[1]+N[2]*SV[2]; VSDOT = AT[0]*KSS[0]+AT[1]*KSS[1]+AT[2]*KSS[2]+ v[0]*SU[0]+v[1]*SU[1]+v[2]*SU[2]; VSIGDOT = AT[0]*KSSIG[0]+AT[1]*KSSIG[1]+AT[2]*KSSIG[2]+ v[0]*SV[0]+v[1]*SV[1]+v[2]*SV[2]; NXSDOT = NDOT[0]*XS[0]+NDOT[1]*XS[1]+NDOT[2]*XS[2]+ N[0]*XSD[0]+N[1]*XSD[1]+N[2]*XSD[2]; NXADOT = NDOT[0]*XA[0]+NDOT[1]*XA[1]+NDOT[2]*XA[2]+ N[0]*XAD[0]+N[1]*XAD[1]+N[2]*XAD[2]; rS1p = -rS1*NDV/r; rS2p = -rS2*NDV/r; for(k=0;k<3;k++) { S1p[k] = (S1DirNew[k] - S1Dir[k])/dt_bh; S2p[k] = (S2DirNew[k] - S2Dir[k])/dt_bh; rS1p += v[k]*S1Dir[k]/r + N[k]*S1p[k]; rS2p += v[k]*S2Dir[k]/r + N[k]*S2p[k]; Np[k] = (v[k] - N[k]*NDV)/r; } for(k=0;k<3;k++) { C1_5D[k] = -3.0*RP/r*C1_5[k]+(NDOT[k]*(12.0*SDNCV+6.0*DM/M* SIGDNCV)+N[k]*(12.0*SNVDOT+6.0*DM/M*SIGNVDOT)+9.0*NVDOT* NCS[k]+9.0*NDV*(NDOTCS[k]+NCSU[k])+3.0*DM/M*(NVDOT*NCSIG[k]+ NDV*(NDOTCSIG[k]+NCSV[k]))-7.0*(ACS[k]+VCSU[k])-3.0*DM/M* (ACSIG[k]+VCSV[k]))/(r3); C2D[k] = -4.0*RP/r*C2[k]-MOR*MOR*MOR*3.0*eta/r*(NDOT[k]* (XS2-XA2-5.0*NXS*NXS+5.0*NXA*NXA)+N[k]*(2.0*(XS[0]*XSD[0]+ XS[1]*XSD[1]+XS[2]*XSD[2]-XA[0]*XAD[0]-XA[1]*XAD[1]- XA[2]*XAD[2])-10.0*NXS*NXSDOT+10.0*NXA*NXADOT)+2.0*(XSD[k]* NXS+XS[k]*NXSDOT-XAD[k]*NXA-XA[k]*NXADOT)); C2_5D[k] = -3.0*RP/r*C2_5[k]+(NDOT[k]*(SDNCV*(-30.0*eta* NDV*NDV+24.0*eta*V1_V22-MOR*(38.0+25.0*eta))+DM/M*SIGDNCV* (-15.0*eta*NDV*NDV+12.0*eta*V1_V22-MOR*(18.0+14.5*eta)))+ N[k]*(SNVDOT*(-30.0*eta*NDV*NDV+24.0*eta*V1_V22-MOR* (38.0+25.0*eta))+SDNCV*(-60.0*eta*NDV*NVDOT+48.0*eta*VA+ MOR*RP/r*(38.0+25.0*eta))+DM/M*SIGNVDOT*(-15.0*eta*NDV* NDV+12.0*eta*V1_V22-MOR*(18.0+14.5*eta))+DM/M*SIGDNCV* (-30.0*eta*NDV*NVDOT+24.0*eta*VA+MOR*RP/r*(18.0+14.5*eta)))+ (NVDOT*v[k]+NDV*AT[k])*(SDNCV*(-9.0+9.0*eta)+DM/M*SIGDNCV* (-3.0+6.0*eta))+NDV*v[k]*(SNVDOT*(-9.0+9.0*eta)+DM/M* SIGNVDOT*(-3.0+6.0*eta))+(NDOTCV[k]+NCA[k])*(NDV*VDS*(-3.0+ 3.0*eta)-8.0*MOR*eta*NDS-DM/M*(4.0*MOR*eta*NDSIG+3.0*NDV*VDSIG) )+NCV[k]*((NVDOT*VDS+NDV*VSDOT)*(-3.0+3.0*eta)-8.0*eta*MOR* (NSDOT-RP/r*NDS)-DM/M*(4.0*eta*MOR*(NSIGDOT-RP/r*NDSIG)+ 3.0*(NVDOT*VDSIG+NDV*VSIGDOT)))+(NVDOT*NCS[k]+NDV* (NDOTCS[k]+NCSU[k]))*(-22.5*eta*NDV*NDV+21.0*eta*V1_V22- MOR*(25.0+15.0*eta))+NDV*NCS[k]*(-45.0*eta*NDV*NVDOT+42.0*eta* VA+MOR*RP/r*(25.0+15.0*eta))+DM/M*(NVDOT*NCSIG[k]+NDV* (NDOTCSIG[k]+NCSV[k]))*(-15.0*eta*NDV*NDV+12.0*eta*V1_V22- MOR*(9.0+8.5*eta))+DM/M*NDV*NCSIG[k]*(-30.0*eta*NDV*NVDOT+ 24.0*eta*VA+MOR*RP/r*(9.0+8.5*eta))+(ACS[k]+VCSU[k])* (16.5*eta*NDV*NDV+MOR*(21.0+9.0*eta)-14.0*eta*V1_V22)+ VCS[k]*(33.0*eta*NDV*NVDOT-MOR*RP/r*(21.0+9.0*eta)- 28.0*eta*VA)+DM/M*(ACSIG[k]+VCSV[k])*(9.0*eta*NDV*NDV- 7.0*eta*V1_V22+MOR*(9.0+4.5*eta))+DM/M*VCSIG[k]*(18.0* eta*NDV*NVDOT-14.0*eta*VA-MOR*RP/r*(9.0+4.5*eta)))/ (r3); if(Van_QM==1) { if(m1>m2) { QMD[k] = -1.5*MOR*MOR*MOR*eta*(-4.0*RP*QMAux1[k]/r2+( 2.0*(SPSPP1*QMAux2_1[k]/nu+SPSPP2*QMAux2_2[k]*nu) + SpinPrev2_1*(-10.0*rS1*rS1p*N[k]+(1.0-5.0*rS1*rS1)*Np[k]+2.0*rS1p*S1Dir[k]+2.0*rS1*S1p[k])/nu + SpinPrev2_2*(-10.0*rS2*rS2p*N[k]+(1.0-5.0*rS2*rS2)*Np[k]+2.0*rS2p*S2Dir[k]+2.0*rS2*S2p[k])*nu )/r); } else { QMD[k] = -1.5*MOR*MOR*MOR*eta*(-4.0*RP*QMAux1[k]/r2+( 2.0*(SPSPP2*QMAux2_1[k]/nu+SPSPP1*QMAux2_2[k]*nu) + SpinPrev2_2*(-10.0*rS2*rS2p*N[k]+(1.0-5.0*rS2*rS2)*Np[k]+2.0*rS2p*S2Dir[k]+2.0*rS2*S2p[k])/nu + SpinPrev2_1*(-10.0*rS1*rS1p*N[k]+(1.0-5.0*rS1*rS1)*Np[k]+2.0*rS1p*S1Dir[k]+2.0*rS1*S1p[k])*nu )/r); } } /* if(Van_QM==1) */ } /* k */ } /* if(Van_Spin==1) */ ADK = ADK2+ADK4+ADK5+ADK6+ADK7; BDK = BDK2+BDK4+BDK5+BDK6+BDK7; KSAK = AK2+AK4+AK5+AK6+AK7; KSBK = BK2+BK4+BK5+BK6+BK7; for(k=0;k<3;k++) AD[k] = -2.0*MOR*RP*(KSAK*N[k]+KSBK*v[k])/r2 + MOR*(ADK*N[k]+BDK*v[k])/r + MOR*(KSAK*(v[k]-N[k]*RP)/r+KSBK*AT[k])/r + C1_5D[k]/c_2 + C2D[k]/c_4 +C2_5D[k]/c_4 + QMD[k]/c_4; for(k=0;k<3;k++) // new values of the BH's spins, returned back to the main program... { spin1[k] = SPIN[k][0]; spin2[k] = SPIN[k][1]; } for(k=0;k<3;k++) { if(usedOrNot[0] == 1) // PN0 (Newton) ~1/c^0 { adot_pn1[0][k] = -m2*(v[k]/r3 - 3.0*RP*x[k]/r2/r2); adot_pn2[0][k] = m1*(v[k]/r3 - 3.0*RP*x[k]/r2/r2); } if(usedOrNot[1] == 1) // PN1 ~1/c^2 { adot_pn1[1][k] = (-2.0*MOR*RP*(AK2*N[k]+BK2*v[k])/r2 + MOR*(ADK2*N[k]+BDK2*v[k])/r + MOR*(AK2*(v[k]-N[k]*RP)/r+BK2*A[k])/r)*m2/M; adot_pn2[1][k] = -(-2.0*MOR*RP*(AK2*N[k]+BK2*v[k])/r2 + MOR*(ADK2*N[k]+BDK2*v[k])/r + MOR*(AK2*(v[k]-N[k]*RP)/r+BK2*A[k])/r)*m1/M; } if(usedOrNot[2] == 1) // PN2 ~1/c^4 { adot_pn1[2][k] = (-2.0*MOR*RP*(AK4*N[k]+BK4*v[k])/r2 + MOR*(ADK4*N[k]+BDK4*v[k])/r + MOR*(AK4*(v[k]-N[k]*RP)/r+BK4*A[k])/r)*m2/M; adot_pn2[2][k] = -(-2.0*MOR*RP*(AK4*N[k]+BK4*v[k])/r2 + MOR*(ADK4*N[k]+BDK4*v[k])/r + MOR*(AK4*(v[k]-N[k]*RP)/r+BK4*A[k])/r)*m1/M; } if(usedOrNot[3] == 1) // PN2.5 ~1/c^5 { adot_pn1[3][k] = (-2.0*MOR*RP*(AK5*N[k]+BK5*v[k])/r2 + MOR*(ADK5*N[k]+BDK5*v[k])/r + MOR*(AK5*(v[k]-N[k]*RP)/r+BK5*A[k])/r)*m2/M; adot_pn2[3][k] = -(-2.0*MOR*RP*(AK5*N[k]+BK5*v[k])/r2 + MOR*(ADK5*N[k]+BDK5*v[k])/r + MOR*(AK5*(v[k]-N[k]*RP)/r+BK5*A[k])/r)*m1/M; } if(usedOrNot[4] == 1) // PN3 ~1/c^6 { adot_pn1[4][k] = (-2.0*MOR*RP*(AK6*N[k]+BK6*v[k])/r2 + MOR*(ADK6*N[k]+BDK6*v[k])/r + MOR*(AK6*(v[k]-N[k]*RP)/r+BK6*A[k])/r)*m2/M; adot_pn2[4][k] = -(-2.0*MOR*RP*(AK6*N[k]+BK6*v[k])/r2 + MOR*(ADK6*N[k]+BDK6*v[k])/r + MOR*(AK6*(v[k]-N[k]*RP)/r+BK6*A[k])/r)*m1/M; } if(usedOrNot[5] == 1) // PN3.5 ~1/c^7 { adot_pn1[5][k] = (-2.0*MOR*RP*(AK7*N[k]+BK7*v[k])/r2 + MOR*(ADK7*N[k]+BDK7*v[k])/r + MOR*(AK7*(v[k]-N[k]*RP)/r+BK7*A[k])/r)*m2/M; adot_pn2[5][k] = -(-2.0*MOR*RP*(AK7*N[k]+BK7*v[k])/r2 + MOR*(ADK7*N[k]+BDK7*v[k])/r + MOR*(AK7*(v[k]-N[k]*RP)/r+BK7*A[k])/r)*m1/M; } if(Van_Spin == 1) // All the SPIN terms { adot_pn1[6][k] += (C1_5D[k]/c_2 + C2D[k]/c_4 +C2_5D[k]/c_4 + QMD[k]/c_4)*m2/M; adot_pn2[6][k] += -(C1_5D[k]/c_2 + C2D[k]/c_4 +C2_5D[k]/c_4 + QMD[k]/c_4)*m1/M; } } // PN jerks // Check RS_DIST conditions !!! RS_DIST = 4.0*(2.0*m1/c_2 + 2.0*m2/c_2); if(r < RS_DIST) { if(myRank == rootRank) { fprintf(stdout,"PN RSDIST: r = %.8E \t RS = %.8E \n", r, RS_DIST); fflush(stdout); } return(505); } else { return(0); } } /***************************************************************************/