/***************************************************************************** File Name : "phi-GRAPE/GPU.c" // BH (1 || 2) + ACC + EJECT : Contents : N-body code with integration by individual block time step : together with the parallel using of GRAPE6a board's. : : Added the GPU support via SAPPORO library. : : Normalization to the physical units!!! : : External Potential added : Plummer-Kuzmin: Bulge, Disk, Halo : Kharchenko+Andreas... : : SC extra POT for Bek SC test runs... : : Rebuced to the Single BH -> Plummer : Andreas+Fazeel... : : Stellar evolution added : Stellar lifetimes: Raiteri, Villata & Navarro (1996) : IMS mass loss: van den Hoeg & Groenewegen (1997) : : STARDESTR_EXT: Tidal disruption of stars by external BH... : Chingis, Denis & Maxim... : : STARDESTR: Tidal disruption of stars by BH... : Jose, Li Shuo & Shiyan Zhong : : STARDISK: Drag force... : Chingis, Denis & Maxim... : : STARDISK: variable hz = HZ*(R/R_crit) up to R_crit... : Taras, Andreas... : : Live BH (1 || 2) + ACC + EJECT... : Li Shuo & Shiyan Zhong : : dt_min for BH (1 || 2)... : : added the PN calculus for the BBH : PN0, PN1, PN2, PN2.5 (coded on the base of : Gabor Kupi original routine) : : added the "name" array... : : added the GMC's calculus (GMC on CPU; GMC2 on GPU) : for Alexey SC runs... and also for Fazeel Zurich runs... : : CPU_TIMELIMIT added for the Julich MW cluster runs... : Coded by : Peter Berczik Version number : 19.04 Last redaction : 2019.04.16 12:55 *****************************************************************************/ #include "double3.h" #include "config.h" #include "io.h" #include "external.h" Config *config; #ifdef ETICS #include "grapite.h" // why do we need CEP as a compilaion flag... just have it always on when ETICS is on. IF there is no CEP, there should be a graceful skipping of those operations. //#define ETICS_CEP #ifndef ETICS_DTSCF #error "ETICS_DTSCF must be defined" #endif #endif #define TIMING #define ETA_S_CORR 4.0 #define ETA_BH_CORR 4.0 #define DTMAXPOWER -3.0 #define DTMINPOWER -36.0 #include #include #include #include #include #include #include #include #include #include #define G6_NPIPE 2048 #include "grape6.h" #include /* Some "good" functions and constants... */ // TODO replace with inline functions #define MIN(a,b) (((a)<(b)) ? (a):(b) ) #define SQR(x) ((x)*(x) ) #define KB 1024 #define MB (KB*KB) #define N_MAX (6*MB) double L[3]; // needed in pn_bh_spin.c // Needed for things related to BHs #include "debug.h" double CPU_time_real0, CPU_time_user0, CPU_time_syst0; double CPU_time_real, CPU_time_user, CPU_time_syst; #ifdef TIMING double CPU_tmp_real0, CPU_tmp_user0, CPU_tmp_syst0; double CPU_tmp_real, CPU_tmp_user, CPU_tmp_syst; double DT_TOT, DT_ACT_DEF1, DT_ACT_DEF2, DT_ACT_DEF3, DT_ACT_PRED, DT_ACT_GRAV, DT_EXT_GRAV, DT_GMC_GRAV, DT_GMC_GMC_GRAV, DT_EXT_GMC_GRAV, DT_ACT_CORR, DT_ACT_LOAD, DT_STEVOL, DT_STARDISK, DT_STARDESTR; double DT_ACT_REDUCE; #endif /* some local settings for G6a board's */ int clusterid, ii, nn, numGPU; int npipe=G6_NPIPE, index_i[G6_NPIPE]; double h2_i[G6_NPIPE], p_i[G6_NPIPE]; double3 x_i[G6_NPIPE], v_i[G6_NPIPE], a_i[G6_NPIPE], jerk_i[G6_NPIPE]; int new_tunit=51, new_xunit=51; double ti=0.0; double eps_BH=0.0; /* external potential... */ double3 x_bh1, x_bh2, v_bh1, v_bh2; double pot_bh1, pot_bh2; double3 a_bh1, adot_bh1, a_bh2, adot_bh2; #include "n_bh.c" double3 a_pn1[7], adot_pn1[7], a_pn2[7], adot_pn2[7]; #include "pn_bh_spin.c" #ifdef ETICS double t_exp, dt_exp=ETICS_DTSCF; // t_exp is just the initial value #ifdef ETICS_CEP int grapite_cep_index; #endif #endif void get_CPU_time(double *time_real, double *time_user, double *time_syst) { struct rusage xxx; double sec_u, microsec_u, sec_s, microsec_s; struct timeval tv; getrusage(RUSAGE_SELF,&xxx); sec_u = xxx.ru_utime.tv_sec; sec_s = xxx.ru_stime.tv_sec; microsec_u = xxx.ru_utime.tv_usec; microsec_s = xxx.ru_stime.tv_usec; *time_user = sec_u + microsec_u * 1.0E-06; *time_syst = sec_s + microsec_s * 1.0E-06; gettimeofday(&tv, NULL); *time_real = tv.tv_sec + 1.0E-06 * tv.tv_usec; *time_user = *time_real; } void write_bh_data(double time_cur, double m[], double3 x[], double3 v[], double pot[], double3 a[], double3 adot[], double dt[]) { if (config->live_smbh_count == 2) { auto out = fopen("bh.dat", "a"); for (int i=0; i < 2; i++) { double3 *a_pn, *adot_pn, a_bh, adot_bh; double pot_bh; if (i==0) { a_pn = a_pn1; adot_pn = adot_pn1; pot_bh = pot_bh1; a_bh = a_bh1; adot_bh = adot_bh1; } else { a_pn = a_pn2; adot_pn = adot_pn2; pot_bh = pot_bh2; a_bh = a_bh2; adot_bh = adot_bh2; } if (config->live_smbh_custom_eps >= 0) { fprintf(out, "%.16E \t %.8E \t % .16E % .16E % .16E \t %.16E \t % .16E % .16E % .16E \t %.16E \t % .8E \t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E \t %.8E \t\t % .8E \t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E ", time_cur, m[i], x[i][0], x[i][1], x[i][2], x[i].norm(), v[i][0], v[i][1], v[i][2], v[i].norm(), pot[i], a[i][0], a[i][1], a[i][2], a[i].norm(), adot[i][0], adot[i][1], adot[i][2], adot[i].norm(), dt[i], pot_bh, a_bh[0], a_bh[1], a_bh[2], a_bh.norm(), adot_bh[0], adot_bh[1], adot_bh[2], adot_bh.norm()); if (config->binary_smbh_pn) { fprintf(out, "\t"); for (int pn_idx=0; pn_idx < 7; pn_idx++) { fprintf(out, "\t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E ", a_pn[pn_idx][0], a_pn[pn_idx][1], a_pn[pn_idx][2], a_pn[pn_idx].norm(), adot_pn[pn_idx][0], adot_pn[pn_idx][1], adot_pn[pn_idx][2], adot_pn[pn_idx].norm()); } } fprintf(out, "\n"); } else { fprintf(out,"%.16E \t %.8E \t % .16E % .16E % .16E \t %.16E \t % .16E % .16E % .16E \t %.16E \t % .8E \t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E \t %.8E \n", time_cur, m[i], x[i][0], x[i][1], x[i][2], x[i].norm(), v[i][0], v[i][1], v[i][2], v[i].norm(), pot[i], a[i][0], a[i][1], a[i][2], a[i].norm(), adot[i][0], adot[i][1], adot[i][2], adot[i].norm(), dt[i]); } } fprintf(out, "\n"); fclose(out); } else if (config->live_smbh_count == 1) { auto out = fopen("bh.dat", "a"); double tmp_r = sqrt( SQR(x[0][0]) + SQR(x[0][1]) + SQR(x[0][2]) ); double tmp_v = sqrt( SQR(v[0][0]) + SQR(v[0][1]) + SQR(v[0][2]) ); double tmp_a = sqrt( SQR(a[0][0]) + SQR(a[0][1]) + SQR(a[0][2]) ); double tmp_adot = sqrt( SQR(adot[0][0]) + SQR(adot[0][1]) + SQR(adot[0][2]) ); fprintf(out,"%.16E \t %.8E \t % .16E % .16E % .16E \t %.16E \t % .16E % .16E % .16E \t %.16E \t % .8E \t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E \t %.8E \n", time_cur, m[0], x[0][0], x[0][1], x[0][2], tmp_r, v[0][0], v[0][1], v[0][2], tmp_v, pot[0], a[0][0], a[0][1], a[0][2], tmp_a, adot[0][0], adot[0][1], adot[0][2], tmp_adot, dt[0]); fprintf(out,"\n"); fclose(out); } } void write_bh_nb_data(double time_cur, int N, double m[], double3 x[], double3 v[]) { int nb = config->live_smbh_neighbor_number; int ind_sort[N_MAX]; double var_sort[N_MAX]; //TODO you don't want and probably don't need to allocate these here. Maybe just need size nb, or maybe use as private variables. auto out = fopen("bh_neighbors.dat", "a"); /* 1st BH */ for (int i_bh=0; i_bh < config->live_smbh_count; i_bh++) { for (int i=0; i &external_gravity_components, int n_act, double3 *x_act_new, double3 *v_act_new, double *pot_act_ext, double3 *a_act_new, double3* adot_act_new) { /* Define the external potential for all active particles on all nodes */ int ni = n_act; // TODO redundant? std::fill(pot_act_ext, pot_act_ext+n_act, 0.); for (auto component : external_gravity_components) { if (component->is_active) component->apply(n_act, x_act_new, v_act_new, pot_act_ext, a_act_new, adot_act_new); } #ifdef TIMING get_CPU_time(&CPU_tmp_real0, &CPU_tmp_user0, &CPU_tmp_syst0); #endif /* For simple Plummer potential... */ #ifdef TIMING get_CPU_time(&CPU_tmp_real, &CPU_tmp_user, &CPU_tmp_syst); DT_EXT_GRAV += (CPU_tmp_user - CPU_tmp_user0); #endif } void energy_contr(const double time_cur, const double timesteps, const double n_act_sum, const double g6_calls, double& rcm_sum, double& vcm_sum, double& E_tot_0, double& E_tot_corr_0, double& E_tot_corr_sd_0, int &skip_con, int N, double m[], double3 x[], double3 v[], double pot[], double pot_ext[]) { // TODO maybe use static variables here for the previous step energy? double E_pot = 0.0; for (int i=0; i 0) for (int i=0; ipn_c; std::copy(config->pn_usage.begin(), config->pn_usage.end(), usedOrNot); if (is_hdf5(config->input_file_name)) { #ifndef HAS_HDF5 fprintf(stderr, "ERROR: input file is in HDF5 format, but the code was compiled without HDF5 support\n") return -1; #endif h5_read(config->input_file_name, &diskstep, &N, &time_cur, m, x, v); } else ascii_read(config->input_file_name, &diskstep, &N, &time_cur, m, x, v); std::iota(ind, ind+N, 0); if (myRank == rootRank) { //TODO move it out of (myRank == rootRank) so you don't need to communicate them. eps = config->eps; t_end = config->t_end; dt_disk = config->dt_disk; dt_contr = config->dt_contr; dt_bh = config->dt_bh; eta = config->eta; strcpy(inp_fname, config->input_file_name.c_str()); if (config->binary_smbh_influence_sphere_output) for (int i=0; ilive_smbh_output && (config->live_smbh_count > 0)) { out = fopen("bh.dat", "w"); fclose(out); } if ((config->live_smbh_neighbor_output) && (config->live_smbh_count > 0)) { out = fopen("bh_neighbors.dat", "w"); fclose(out); } if (config->binary_smbh_influence_sphere_output) { out = fopen("bbh_inf.dat", "w"); fclose(out); } } else { // if (diskstep == 0) } // if (diskstep == 0) get_CPU_time(&CPU_time_real0, &CPU_time_user0, &CPU_time_syst0); } /* if (myRank == rootRank) */ /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Broadcast all useful values to all processors... */ MPI_Bcast(&N, 1, MPI_INT, rootRank, MPI_COMM_WORLD); MPI_Bcast(&eps, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&eta, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&t_end, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&dt_disk, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&dt_contr, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&dt_bh, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&time_cur, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); double normalization_mass=1, normalization_length=1, normalization_velocity=1; if (config->ext_units_physical) { normalization_mass = 1/config->unit_mass; normalization_length = 1000/config->unit_length; normalization_velocity = 1.52484071426404437233e+01*sqrt(config->unit_length/config->unit_mass); } Plummer ext_bulge(config->ext_m_bulge*normalization_mass, config->ext_b_bulge*normalization_length); Miyamoto_Nagai ext_disk(config->ext_m_disk*normalization_mass, config->ext_a_disk*normalization_length, config->ext_b_disk*normalization_length); Plummer ext_halo_plummer(config->ext_m_halo_plummer*normalization_mass, config->ext_b_halo_plummer*normalization_length); Logarithmic_halo ext_log_halo(config->ext_log_halo_v*normalization_velocity, config->ext_log_halo_r*normalization_length); Dehnen ext_dehnen(config->ext_dehnen_m*normalization_mass, config->ext_dehnen_r*normalization_length, config->ext_dehnen_gamma); std::vector external_gravity_components; external_gravity_components.push_back(&ext_bulge); external_gravity_components.push_back(&ext_disk); external_gravity_components.push_back(&ext_halo_plummer); external_gravity_components.push_back(&ext_log_halo); external_gravity_components.push_back(&ext_dehnen); if (ext_bulge.is_active) printf("m_bulge = %.4E b_bulge = %.4E\n", config->ext_m_bulge*normalization_mass, config->ext_b_bulge*normalization_length); if (ext_disk.is_active) printf("m_disk = %.4E a_disk = %.4E b_disk = %.4E\n", config->ext_m_disk*normalization_mass, config->ext_a_disk*normalization_length, config->ext_b_disk*normalization_length); if (ext_halo_plummer.is_active) printf("m_halo = %.4E b_halo = %.4E\n", config->ext_m_halo_plummer*normalization_mass, config->ext_b_halo_plummer*normalization_length); if (ext_log_halo.is_active) printf("v_halo = %.6E r_halo = %.6E \n", config->ext_log_halo_v*normalization_velocity, config->ext_log_halo_r*normalization_length); if (ext_dehnen.is_active) printf("m_ext = %.6E r_ext = %.6E \t g_ext = %.3E \n", config->ext_dehnen_m*normalization_mass, config->ext_dehnen_r*normalization_length, config->ext_dehnen_gamma); printf("\n"); fflush(stdout); eta_s = eta/ETA_S_CORR; eta_bh = eta/ETA_BH_CORR; eps2 = SQR(eps); dt_min = 1.0*pow(2.0, DTMINPOWER); dt_max = 1.0*pow(2.0, DTMAXPOWER); if (dt_disk == dt_contr) dt_max = dt_contr; else dt_max = MIN(dt_disk, dt_contr); if (dt_max > 1.0) dt_max = 1.0; t_disk = dt_disk*(1.0+floor(time_cur/dt_disk)); t_contr = dt_contr*(1.0+floor(time_cur/dt_contr)); t_bh = dt_bh*(1.0+floor(time_cur/dt_bh)); if (myRank == rootRank) { printf("t_disk = %.6E t_contr = %.6E t_bh = %.6E \n", t_disk, t_contr, t_bh); printf("\n"); fflush(stdout); } /* if (myRank == rootRank) */ std::fill(t, t+N, time_cur); std::fill(dt, dt+N, dt_min); n_loc = N/n_proc; Active_search active_search(myRank, n_proc, n_loc, N); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Broadcast the values of all particles to all processors... */ MPI_Bcast(ind, N, MPI_INT, rootRank, MPI_COMM_WORLD); MPI_Bcast(m, N, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(x, 3*N, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(v, 3*N, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* init the local GRAPE's */ #ifdef MPI_OVERRIDE numGPU = 1; // TODO get this from config file clusterid = myRank % numGPU; #else MPI_Comm shmcomm; MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &shmcomm); MPI_Comm_size(shmcomm, &numGPU); MPI_Comm_rank(shmcomm, &clusterid); #endif printf("Rank of the processor %03d : Number of GPUs %01d : Cluster ID %01d \n", myRank, numGPU, clusterid); fflush(stdout); g6_open(clusterid); npipe = g6_npipes(); g6_set_tunit(new_tunit); g6_set_xunit(new_xunit); #ifdef ETICS grapite_read_particle_tags(N, "grapite.mask", myRank, n_loc); grapite_set_dt_exp(dt_exp); dt_exp = time_cur; // if we don't have a binary restart then we don't remember the coefficients, and we need to calculate them now. grapite_set_t_exp(t_exp); #endif /* load the nj particles to the G6 */ for (int j=0; jlive_smbh_count == 2) { i_bh1 = 0; i_bh2 = 1; if (config->live_smbh_custom_eps >= 0) { m_bh1 = m[i_bh1]; m_bh2 = m[i_bh2]; x_bh1 = x[i_bh1]; v_bh1 = v[i_bh1]; x_bh2 = x[i_bh2]; v_bh2 = v[i_bh2]; // calculate and "minus" the BH <-> BH _softened_ pot, acc & jerk tmp_i = calc_force_n_BH(m_bh1, x_bh1, v_bh1, m_bh2, x_bh2, v_bh2, eps, &pot_bh1, a_bh1, adot_bh1, &pot_bh2, a_bh2, adot_bh2); pot[i_bh1] -= pot_bh1; pot[i_bh2] -= pot_bh2; a[i_bh1] -= a_bh1; a[i_bh2] -= a_bh2; adot[i_bh1] -= adot_bh1; adot[i_bh2] -= adot_bh2; // calculate and "plus" the new BH <-> BH _unsoftened_ pot, acc, jerk tmp_i = calc_force_n_BH(m_bh1, x_bh1, v_bh1, m_bh2, x_bh2, v_bh2, config->live_smbh_custom_eps, &pot_bh1, a_bh1, adot_bh1, &pot_bh2, a_bh2, adot_bh2); pot[i_bh1] += pot_bh1; pot[i_bh2] += pot_bh2; a[i_bh1] += a_bh1; a[i_bh2] += a_bh2; adot[i_bh1] += adot_bh1; adot[i_bh2] += adot_bh2; } if (config->binary_smbh_pn) { // calculate and "plus" the new BH <-> BH : PN1, PN2, PN2.5, PN3, PN3.5 : acc, jerk dt_bh_tmp = dt[0]; tmp_i = calc_force_pn_BH(m_bh1, x_bh1, v_bh1, s_bh1, m_bh2, x_bh2, v_bh2, s_bh2, C_NB, dt_bh_tmp, usedOrNot, (double(*)[3])a_pn1, (double(*)[3])adot_pn1, (double(*)[3])a_pn2, (double(*)[3])adot_pn2, myRank, rootRank); a[i_bh1] += a_pn1[1] + a_pn1[2] + a_pn1[3] + a_pn1[4] + a_pn1[5] + a_pn1[6]; a[i_bh2] += a_pn2[1] + a_pn2[2] + a_pn2[3] + a_pn2[4] + a_pn2[5] + a_pn2[6]; adot[i_bh1] += adot_pn1[1] + adot_pn1[2] + adot_pn1[3] + adot_pn1[4] + adot_pn1[5] + adot_pn1[6]; adot[i_bh2] += adot_pn2[1] + adot_pn2[2] + adot_pn2[3] + adot_pn2[4] + adot_pn2[5] + adot_pn2[6]; if (myRank == rootRank) { if (tmp_i == 505) { printf("PN RSDIST: %.8E \t %.8E \n", timesteps, time_cur); fflush(stdout); exit(-1); } } } } calc_ext_grav(external_gravity_components, n_act, x_act, v_act, pot_ext, a, adot); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Energy control... */ if (myRank == rootRank) { energy_contr(time_cur, timesteps, n_act_sum, g6_calls, rcm_sum, vcm_sum, E_tot_0, E_tot_corr_0, E_tot_corr_sd_0, skip_con, N, m, x, v, pot, pot_ext); } /* if (myRank == rootRank) */ #ifdef ETICS_DUMP if (diskstep==0) { sprintf(out_fname, "coeffs.%06d.%02d.dat", 0, myRank); grapite_dump(out_fname, 2); } #endif /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); #ifdef ETICS_CEP // First calculate the DC grapite_calc_center(N, m, x, v, xcm, vcm, xdc, vdc); // Now copy it to the global particle list memcpy(x[grapite_cep_index], xdc, 3*sizeof(double)); memcpy(v[grapite_cep_index], vdc, 3*sizeof(double)); grapite_update_cep(time_cur, xdc, vdc, a[grapite_cep_index], adot[grapite_cep_index]); #endif /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Define initial timestep for all particles on all nodes */ for (int i=0; i dt_max) dt_tmp = dt_max; dt[i] = dt_tmp; if (config->dt_min_warning && (myRank == 0)) { if (dt[i] == dt_min) { printf("!!! Warning0: dt = dt_min = %.6E \t ind = %07d \n", dt[i], ind[i]); fflush(stdout); } } } /* i */ if (config->live_smbh_count > 0) { double min_dt = *std::min_element(dt, dt+N); for (int i=0; ilive_smbh_count; i++) dt[i] = min_dt; } /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* load the new values for particles to the local GRAPE's */ /* load the nj particles to the G6 */ for (int j=0; jlive_smbh_output) write_bh_data(time_cur, m, x, v, pot, a, adot, dt); /* Write BH NB data... */ if (config->live_smbh_neighbor_output) write_bh_nb_data(time_cur, N, m, x, v); } /* if (myRank == rootRank) */ /* Get the Starting time on rootRank */ if (myRank == rootRank) { get_CPU_time(&CPU_time_real0, &CPU_time_user0, &CPU_time_syst0); get_CPU_time(&CPU_time_real, &CPU_time_user, &CPU_time_syst); } /* if (myRank == rootRank) */ timesteps = 0.0; // Why won't those two be long long instead of double + should include the zeroth step n_act_sum = 0.0; for (int i=1; ilive_smbh_count > 0) { i_bh1 = 0; i_bh2 = 1; } #endif #ifdef TIMING get_CPU_time(&CPU_tmp_real, &CPU_tmp_user, &CPU_tmp_syst); DT_ACT_DEF2 += (CPU_tmp_user - CPU_tmp_user0); #endif #ifdef TIMING get_CPU_time(&CPU_tmp_real0, &CPU_tmp_user0, &CPU_tmp_syst0); #endif for (int i=0; ilive_smbh_count == 2) { if (config->live_smbh_custom_eps >= 0) { m_bh1 = m_act[i_bh1]; m_bh2 = m_act[i_bh2]; x_bh1 = x_act_new[i_bh1]; v_bh1 = v_act_new[i_bh1]; x_bh2 = x_act_new[i_bh2]; v_bh2 = v_act_new[i_bh2]; // calculate and "minus" the BH <-> BH softened pot, acc & jerk tmp_i = calc_force_n_BH(m_bh1, x_bh1, v_bh1, m_bh2, x_bh2, v_bh2, eps, &pot_bh1, a_bh1, adot_bh1, &pot_bh2, a_bh2, adot_bh2); pot_act_new[i_bh1] -= pot_bh1; pot_act_new[i_bh2] -= pot_bh2; a_act_new[i_bh1] -= a_bh1; a_act_new[i_bh2] -= a_bh2; adot_act_new[i_bh1] -= adot_bh1; adot_act_new[i_bh2] -= adot_bh2; // calculate and "plus" the new BH <-> BH unsoftened pot, acc, jerk tmp_i = calc_force_n_BH(m_bh1, x_bh1, v_bh1, m_bh2, x_bh2, v_bh2, config->live_smbh_custom_eps, &pot_bh1, a_bh1, adot_bh1, &pot_bh2, a_bh2, adot_bh2); pot_act_new[i_bh1] += pot_bh1; pot_act_new[i_bh2] += pot_bh2; a_act_new[i_bh1] += a_bh1; a_act_new[i_bh2] += a_bh2; adot_act_new[i_bh1] += adot_bh1; adot_act_new[i_bh2] += adot_bh2; } if (config->binary_smbh_pn) { // calculate and "plus" the new BH <-> BH : PN1, PN2, PN2.5, PN3, PN3.5 : acc, jerk dt_bh_tmp = dt[0]; tmp_i = calc_force_pn_BH(m_bh1, x_bh1, v_bh1, s_bh1, m_bh2, x_bh2, v_bh2, s_bh2, C_NB, dt_bh_tmp, usedOrNot, (double(*)[3])a_pn1, (double(*)[3])adot_pn1, (double(*)[3])a_pn2, (double(*)[3])adot_pn2, myRank, rootRank); a_act_new[i_bh1] += a_pn1[1] + a_pn1[2] + a_pn1[3] + a_pn1[4] + a_pn1[5] + a_pn1[6]; a_act_new[i_bh2] += a_pn2[1] + a_pn2[2] + a_pn2[3] + a_pn2[4] + a_pn2[5] + a_pn2[6]; adot_act_new[i_bh1] += adot_pn1[1] + adot_pn1[2] + adot_pn1[3] + adot_pn1[4] + adot_pn1[5] + adot_pn1[6]; adot_act_new[i_bh2] += adot_pn2[1] + adot_pn2[2] + adot_pn2[3] + adot_pn2[4] + adot_pn2[5] + adot_pn2[6]; if (myRank == rootRank) { if (tmp_i == 505) { printf("PN RSDIST: TS = %.8E \t t = %.8E \n", timesteps, time_cur); fflush(stdout); exit(-1); } } } } calc_ext_grav(external_gravity_components, n_act, x_act_new, v_act_new, pot_act_ext, a_act_new, adot_act_new); /* correct the active particles positions etc... on all the nodes */ #ifdef TIMING get_CPU_time(&CPU_tmp_real0, &CPU_tmp_user0, &CPU_tmp_syst0); #endif for (int i=0; ilive_smbh_count > 0) && (ind_act[i] < config->live_smbh_count)) eta_curr = eta_bh; else eta_curr = eta; double dt_new = aarseth_step(eta_curr, dt_tmp, a_act_new[i], adot_act_new[i], a2, a3); //TODO the below should be moved to a function if (dt_new < dt_min) dt_tmp = dt_min; if ((dt_new < dt_tmp) && (dt_new > dt_min)) { power = log(dt_new)/log(2.0) - 1; dt_tmp = pow(2.0, (double)power); // TODO why is this casting needed here? } if ((dt_new > 2*dt_tmp) && (fmod(min_t, 2*dt_tmp) == 0) && (2*dt_tmp <= dt_max)) { dt_tmp *= 2; } if (config->dt_min_warning && (myRank == 0)) { if (dt_act[i] == dt_min) { printf("!!! Warning1: dt_act = dt_min = %.6E \t ind_act = %07d \n", dt[i], ind_act[i]); fflush(stdout); } } /* BEGIN copy of everything */ dt_act[i] = dt_tmp; t_act[i] = min_t; pot_act[i] = pot_act_new[i]; x_act[i] = x_act_new[i]; v_act[i] = v_act_new[i]; a_act[i] = a_act_new[i]; adot_act[i] = adot_act_new[i]; /* END copy of everything */ } /* i */ /* define the min. dt over all the act. part. and set it also for the BH... */ if (config->live_smbh_count > 0) { double min_dt = *std::min_element(dt_act, dt_act+n_act); if (config->live_smbh_count>=1) dt_act[i_bh1] = min_dt; if (config->live_smbh_count==2) dt_act[i_bh2] = min_dt; } if (config->binary_smbh_influence_sphere_output && (myRank == rootRank)) { //TODO clean up this mass. We don't want to have all these _act arrays; they are only needed for this lame function. binary_smbh_influence_sphere_output(i_bh1, i_bh2, ind_act, m_act, x_act, v_act, pot_act, dt_act, n_act, timesteps, time_cur, config->binary_smbh_influence_radius_factor, inf_event); } /* Return back the new coordinates + etc... of active part. to the global data... */ for (int i=0; i= t_bh) { if (myRank == rootRank) { /* Write BH data... */ if (config->live_smbh_output) write_bh_data(time_cur, m, x, v, pot, a, adot, dt); /* Write BH NB data... */ if (config->live_smbh_neighbor_output) write_bh_nb_data(time_cur, N, m, x, v); } /* if (myRank == rootRank) */ t_bh += dt_bh; } /* if (time_cur >= t_bh) */ if (time_cur >= t_contr) { if (myRank == rootRank) { energy_contr(time_cur, timesteps, n_act_sum, g6_calls, rcm_sum, vcm_sum, E_tot_0, E_tot_corr_0, E_tot_corr_sd_0, skip_con, N, m, x, v, pot, pot_ext); /* write cont data */ if (config->output_hdf5) h5_write("data.con", diskstep, N, time_cur, m, x, v, pot, a, adot, 0, true); else ascii_write("data.con", diskstep, N, time_cur, m, x, v, 16); /* possible OUT for timing !!! */ #ifdef TIMING out = fopen("timing.dat", "a"); DT_TOT = DT_ACT_DEF1 + DT_ACT_DEF2 + DT_ACT_DEF3 + DT_ACT_PRED + DT_ACT_GRAV + DT_EXT_GRAV + DT_GMC_GRAV + DT_GMC_GMC_GRAV + DT_EXT_GMC_GRAV + DT_ACT_CORR + DT_ACT_LOAD + DT_STEVOL + DT_STARDISK + DT_STARDESTR + DT_ACT_REDUCE; fprintf(out,"%.8E \t %.6E \t %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f \t %.3f \t %.8E %.8E %.8E \t %.8E %.8E %.8E \n", time_cur, DT_TOT, 100.0*DT_ACT_DEF1/DT_TOT, 100.0*DT_ACT_DEF2/DT_TOT, 100.0*DT_ACT_DEF3/DT_TOT, 100.0*DT_ACT_PRED/DT_TOT, 100.0*DT_ACT_GRAV/DT_TOT, 100.0*DT_EXT_GRAV/DT_TOT, 100.0*DT_GMC_GRAV/DT_TOT, 100.0*DT_GMC_GMC_GRAV/DT_TOT, 100.0*DT_EXT_GMC_GRAV/DT_TOT, 100.0*DT_ACT_CORR/DT_TOT, 100.0*DT_ACT_LOAD/DT_TOT, 100.0*DT_STEVOL/DT_TOT, 100.0*DT_STARDISK/DT_TOT, 100.0*DT_STARDESTR/DT_TOT, 100.0*DT_ACT_REDUCE/DT_TOT, CPU_time_real-CPU_time_real0, CPU_time_user-CPU_time_user0, CPU_time_syst-CPU_time_syst0, timesteps, n_act_sum, 57.0*N*n_act_sum/(CPU_time_user-CPU_time_user0)/1.0E+09); fclose(out); #endif } /* if (myRank == rootRank) */ #ifdef ETICS_CEP // We are /inside/ a control step, so all particles must be synchronized; we can safely calculate their density centre. The acceleration and jerk currently in the memory are for the predicted position of the CEP, by calling grapite_calc_center we "correct" the position and velocity, but not the gravity at that point. // First calculate the DC grapite_calc_center(N, m, x, v, xcm, vcm, xdc, vdc); // Now copy it to the global particle list memcpy(x[grapite_cep_index], xdc, 3*sizeof(double)); memcpy(v[grapite_cep_index], vdc, 3*sizeof(double)); // Now copy it to the local particle list for tha appropriate rank if (myRank == grapite_cep_index/n_loc) { memcpy(x_loc[grapite_cep_index - myRank*n_loc], xdc, 3*sizeof(double)); memcpy(v_loc[grapite_cep_index - myRank*n_loc], vdc, 3*sizeof(double)); } grapite_update_cep(time_cur, xdc, vdc, a[grapite_cep_index], adot[grapite_cep_index]); #endif t_contr += dt_contr; } /* if (time_cur >= t_contr) */ if (time_cur >= t_disk) { if (myRank == rootRank) { diskstep++; char out_fname[256]; sprintf(out_fname, "%06d", diskstep); if (config->output_hdf5) h5_write(std::string(out_fname) + ".h5", diskstep, N, time_cur, m, x, v, pot, a, adot, config->output_extra_mode, config->output_hdf5_double_precision); else ascii_write(std::string(out_fname) + ".dat", diskstep, N, time_cur, m, x, v, config->output_ascii_precision); } /* if (myRank == rootRank) */ #ifdef ETICS_DUMP sprintf(out_fname, "coeffs.%06d.%02d.dat", diskstep, myRank); grapite_dump(out_fname, 2); #endif t_disk += dt_disk; } /* if (time_cur >= t_disk) */ } /* while (time_cur < t_end) */ /* close the local GRAPEs */ g6_close(clusterid); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); MPI_Reduce(&g6_calls, &g6_calls_sum, 1, MPI_DOUBLE, MPI_SUM, rootRank, MPI_COMM_WORLD); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); if (myRank == rootRank) { /* Write some output for the timestep annalize... */ printf("\n"); printf("timesteps = %.0f Total sum of integrated part. = %.0f g6_calls on all nodes = %.0f \n", timesteps, n_act_sum, g6_calls); printf("\n"); printf("Real Speed = %.3f GFlops \n", 57.0*N*n_act_sum/(CPU_time_user-CPU_time_user0)/1.0E+09); fflush(stdout); } /* if (myRank == rootRank) */ /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Finalize the MPI work */ MPI_Finalize(); return 0; }