/***************************************************************************** File Name : "phi-GRAPE/GPU.c" // BH (1 || 2) + ACC + EJECT : Contents : N-body code with integration by individual block time step : together with the parallel using of GRAPE6a board's. : : Added the GPU support via SAPPORO library. : : Normalization to the physical units!!! : : External Potential added : Plummer-Kuzmin: Bulge, Disk, Halo : Kharchenko+Andreas... : : SC extra POT for Bek SC test runs... : : Rebuced to the Single BH -> Plummer : Andreas+Fazeel... : : Stellar evolution added : Stellar lifetimes: Raiteri, Villata & Navarro (1996) : IMS mass loss: van den Hoeg & Groenewegen (1997) : : STARDESTR_EXT: Tidal disruption of stars by external BH... : Chingis, Denis & Maxim... : : STARDESTR: Tidal disruption of stars by BH... : Jose, Li Shuo & Shiyan Zhong : : STARDISK: Drag force... : Chingis, Denis & Maxim... : : STARDISK: variable hz = HZ*(R/R_crit) up to R_crit... : Taras, Andreas... : : Live BH (1 || 2) + ACC + EJECT... : Li Shuo & Shiyan Zhong : : dt_min for BH (1 || 2)... : : added the PN calculus for the BBH : PN0, PN1, PN2, PN2.5 (coded on the base of : Gabor Kupi original routine) : : added the "name" array... : : added the GMC's calculus (GMC on CPU; GMC2 on GPU) : for Alexey SC runs... and also for Fazeel Zurich runs... : : CPU_TIMELIMIT added for the Julich MW cluster runs... : Coded by : Peter Berczik Version number : 19.04 Last redaction : 2019.04.16 12:55 *****************************************************************************/ #include "config.h" Config *config; #define NORM // Physical normalization //#define EXTPOT_BH // BH - usually NB units //#define EXTPOT_GAL_DEH // Dehnen Galactic - usually physical units #ifdef ETICS #include "grapite.h" // why do we need CEP as a compilaion flag... just have it always on when ETICS is on. IF there is no CEP, there should be a graceful skipping of those operations. //#define ETICS_CEP #ifndef ETICS_DTSCF #error "ETICS_DTSCF must be defined" #endif #endif #define TIMING #define ETA_S_CORR 4.0 #define ETA_BH_CORR 4.0 #define DTMAXPOWER -3.0 #define DTMINPOWER -36.0 /* -3.0 0.125 -4.0 0.0625 -5.0 0.03125 -7.0 ~1e-2 -10.0 ~1e-3 ............. -20.0 ~1e-6 -23.0 ~1e-7 -26.0 ~1e-8 -30.0 ~1e-9 */ //#define ACT_DEF_LL #if defined(ACT_DEF_LL) && defined(ACT_DEF_GRAPITE) #error "Contradicting preprocessor flags!" #endif #include #include #include #include #include #include #include #include #include #include #define G6_NPIPE 2048 #include "grape6.h" #include /* Some "good" functions and constants... */ #define SIG(x) (((x)<0) ? (-1):(1) ) #define ABS(x) (((x)<0) ? (-x):(x) ) #define MAX(a,b) (((a)>(b)) ? (a):(b) ) #define MIN(a,b) (((a)<(b)) ? (a):(b) ) #define SQR(x) ((x)*(x) ) #define POW3(x) ((x)*SQR(x) ) #define Pi 3.14159265358979323846 #define TWOPi 6.283185307179 #define sqrt_TWOPi 2.506628274631 #ifdef NORM //http://pdg.lbl.gov/2015/reviews/rpp2015-rev-astrophysical-constants.pdf #define G 6.67388E-11 // (m/s^2) * (m^2/kg) #define Msol 1.988489E+30 // kg #define Rsol 6.957E+08 // m #define AU 149597870700.0 // m #define pc 3.08567758149E+16 // m #define Year 31556925.2 // s #define c_feny 299792458.0 // m/s #define kpc (1.0E+03*pc) // m #define km 1.0E+03 // km -> m #define cm3 1.0E-06 // cm^3 -> m^3 #define Myr (1.0E+06*Year) // s #define Gyr (1.0E+09*Year) // s #define R_gas 8.31447215 // J/(K*mol) #define k_gas 1.380650424E-23 // J/K #define N_A 6.022141510E+23 // 1/mol #define mu 1.6605388628E-27 // kg #define mp 1.67262163783E-27 // kg #define me 9.1093821545E-31 // kg #define pc2 (pc*pc) #define pc3 (pc*pc*pc) #define kpc2 (kpc*kpc) #define kpc3 (kpc*kpc*kpc) #endif /* 1KB = 1024 2KB = 2048 4KB = 4096 8KB = 8192 16KB = 16384 32KB = 32768 64KB = 65536 128KB = 131072 256KB = 262144 512KB = 524288 1024KB = 1048576 -> 1MB */ #define KB 1024 #define MB (KB*KB) #define N_MAX (6*MB) #define N_MAX_loc (2*MB) struct double3 { double data[3]; double3() {} double3(const double x, const double y, const double z) { data[0] = x; data[1] = y; data[2] = z; } double& operator[](int i) {return data[i];} double3& operator=(const double3& a) { data[0] = a.data[0]; data[1] = a.data[1]; data[2] = a.data[2]; return *this; } double3& operator+=(const double3& a) { data[0] += a.data[0]; data[1] += a.data[1]; data[2] += a.data[2]; return *this; } double3& operator-=(const double3& a) { data[0] -= a.data[0]; data[1] -= a.data[1]; data[2] -= a.data[2]; return *this; } double3& operator/=(const double& c) { data[0] /= c; data[1] /= c; data[2] /= c; return *this; } double norm2() const { return data[0]*data[0]+data[1]*data[1]+data[2]*data[2]; } double norm() const { return sqrt(data[0]*data[0]+data[1]*data[1]+data[2]*data[2]); } operator double*() {return data;} }; double3 operator*(const double& c, const double3& a) { return double3(a.data[0]*c, a.data[1]*c, a.data[2]*c); } double3 operator*(const double3& a, const double& c) { return double3(a.data[0]*c, a.data[1]*c, a.data[2]*c); } double operator*(const double3& a, const double3& b) { return a.data[0]*b.data[0]+a.data[1]*b.data[1]+a.data[2]*b.data[2]; } double3 operator/(const double3& a, const double& c) { return double3(a.data[0]/c, a.data[1]/c, a.data[2]/c); } double3 operator+(const double3& a, const double3& b) { return double3(a.data[0]+b.data[0], a.data[1]+b.data[1], a.data[2]+b.data[2]); } double3 operator-(const double3& a, const double3& b) { return double3(a.data[0]-b.data[0], a.data[1]-b.data[1], a.data[2]-b.data[2]); } double L[3]; // needed in pn_bh_spin.c // Needed for things related to BHs #include "debug.h" // int ind_sort[N_MAX]; // double var_sort[N_MAX]; double CPU_time_real0, CPU_time_user0, CPU_time_syst0; double CPU_time_real, CPU_time_user, CPU_time_syst; #ifdef TIMING double CPU_tmp_real0, CPU_tmp_user0, CPU_tmp_syst0; double CPU_tmp_real, CPU_tmp_user, CPU_tmp_syst; double DT_TOT, DT_ACT_DEF1, DT_ACT_DEF2, DT_ACT_DEF3, DT_ACT_PRED, DT_ACT_GRAV, DT_EXT_GRAV, DT_GMC_GRAV, DT_GMC_GMC_GRAV, DT_EXT_GMC_GRAV, DT_ACT_CORR, DT_ACT_LOAD, DT_STEVOL, DT_STARDISK, DT_STARDESTR; double DT_ACT_REDUCE; #endif /* some local settings for G6a board's */ int clusterid, ii, nn, numGPU; int npipe=G6_NPIPE, index_i[G6_NPIPE]; double h2_i[G6_NPIPE], p_i[G6_NPIPE]; double3 x_i[G6_NPIPE], v_i[G6_NPIPE], a_i[G6_NPIPE], jerk_i[G6_NPIPE]; int new_tunit=51, new_xunit=51; double ti=0.0; double3 a2by18, a1by6, aby2; /* normalization... */ double m_norm, r_norm, v_norm, t_norm; double eps_BH=0.0; /* external potential... */ #ifdef EXTPOT_GAL_DEH double m_ext, r_ext, g_ext, tmp_r2, tmp_r3, dum, dum2, dum3, dum_g, tmp_g; #endif #ifdef EXTPOT_BH double r2, rv_ij, m_bh, b_bh, eps_bh; // NOTE different from eps_BH // NOTE there are other m_bh and b_bh defined outside this ifdef block // NOTE this is a mess. Looks like eps_bh is never used, and the m_bh from outside the block is never used. #endif // double x_bh1[3], x_bh2[3], v_bh1[3], v_bh2[3]; double3 x_bh1, x_bh2, v_bh1, v_bh2; // double pot_bh1, a_bh1[3], adot_bh1[3], // pot_bh2, a_bh2[3], adot_bh2[3]; double pot_bh1, pot_bh2; double3 a_bh1, adot_bh1, a_bh2, adot_bh2; //double eps_BH = 0.0; #include "n_bh.c" double3 a_pn1[7], adot_pn1[7], a_pn2[7], adot_pn2[7]; #include "pn_bh_spin.c" #ifdef ETICS double t_exp, dt_exp=ETICS_DTSCF; // t_exp is just the initial value #ifdef ETICS_CEP int grapite_cep_index; #endif #endif void get_CPU_time(double *time_real, double *time_user, double *time_syst) { struct rusage xxx; double sec_u, microsec_u, sec_s, microsec_s; struct timeval tv; getrusage(RUSAGE_SELF,&xxx); sec_u = xxx.ru_utime.tv_sec; sec_s = xxx.ru_stime.tv_sec; microsec_u = xxx.ru_utime.tv_usec; microsec_s = xxx.ru_stime.tv_usec; *time_user = sec_u + microsec_u * 1.0E-06; *time_syst = sec_s + microsec_s * 1.0E-06; gettimeofday(&tv, NULL); *time_real = tv.tv_sec + 1.0E-06 * tv.tv_usec; *time_user = *time_real; } void read_data(char inp_fname[], int *diskstep, int *N, double *time_cur, int ind[], double m[], double3 x[], double3 v[]) { auto inp = fopen(inp_fname, "r"); fscanf(inp, "%d \n", diskstep); fscanf(inp, "%d \n", N); fscanf(inp, "%lE \n", time_cur); for (int i=0; i<*N; i++) fscanf(inp,"%d %lE %lE %lE %lE %lE %lE %lE \n", &ind[i], &m[i], &x[i][0], &x[i][1], &x[i][2], &v[i][0], &v[i][1], &v[i][2]); fclose(inp); } void write_snap_data(char out_fname[], int diskstep, int N, double time_cur, int ind[], double m[], double3 x[], double3 v[]) { auto out = fopen(out_fname, "w"); fprintf(out,"%06d \n", diskstep); fprintf(out,"%07d \n", N); fprintf(out,"%.10E \n", time_cur); for (int i=0; ilive_smbh_count == 2) { auto out = fopen("bh.dat", "a"); for (int i=0; i < 2; i++) { double3 *a_pn, *adot_pn, a_bh, adot_bh; double pot_bh; if (i==0) { a_pn = a_pn1; adot_pn = adot_pn1; pot_bh = pot_bh1; a_bh = a_bh1; adot_bh = adot_bh1; } else { a_pn = a_pn2; adot_pn = adot_pn2; pot_bh = pot_bh2; a_bh = a_bh2; adot_bh = adot_bh2; } if (config->live_smbh_custom_eps >= 0) { fprintf(out, "%.16E \t %.8E \t % .16E % .16E % .16E \t %.16E \t % .16E % .16E % .16E \t %.16E \t % .8E \t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E \t %.8E \t\t % .8E \t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E ", time_cur, m[i], x[i][0], x[i][1], x[i][2], x[i].norm(), v[i][0], v[i][1], v[i][2], v[i].norm(), pot[i], a[i][0], a[i][1], a[i][2], a[i].norm(), adot[i][0], adot[i][1], adot[i][2], adot[i].norm(), dt[i], pot_bh, a_bh[0], a_bh[1], a_bh[2], a_bh.norm(), adot_bh[0], adot_bh[1], adot_bh[2], adot_bh.norm()); if (config->binary_smbh_pn) { fprintf(out, "\t"); for (int pn_idx=0; pn_idx < 7; pn_idx++) { fprintf(out, "\t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E ", a_pn[pn_idx][0], a_pn[pn_idx][1], a_pn[pn_idx][2], a_pn[pn_idx].norm(), adot_pn[pn_idx][0], adot_pn[pn_idx][1], adot_pn[pn_idx][2], adot_pn[pn_idx].norm()); } } fprintf(out, "\n"); } else { fprintf(out,"%.16E \t %.8E \t % .16E % .16E % .16E \t %.16E \t % .16E % .16E % .16E \t %.16E \t % .8E \t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E \t %.8E \n", time_cur, m[i], x[i][0], x[i][1], x[i][2], x[i].norm(), v[i][0], v[i][1], v[i][2], v[i].norm(), pot[i], a[i][0], a[i][1], a[i][2], a[i].norm(), adot[i][0], adot[i][1], adot[i][2], adot[i].norm(), dt[i]); } } fprintf(out, "\n"); fclose(out); } else if (config->live_smbh_count == 1) { auto out = fopen("bh.dat", "a"); double tmp_r = sqrt( SQR(x[0][0]) + SQR(x[0][1]) + SQR(x[0][2]) ); double tmp_v = sqrt( SQR(v[0][0]) + SQR(v[0][1]) + SQR(v[0][2]) ); double tmp_a = sqrt( SQR(a[0][0]) + SQR(a[0][1]) + SQR(a[0][2]) ); double tmp_adot = sqrt( SQR(adot[0][0]) + SQR(adot[0][1]) + SQR(adot[0][2]) ); fprintf(out,"%.16E \t %.8E \t % .16E % .16E % .16E \t %.16E \t % .16E % .16E % .16E \t %.16E \t % .8E \t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E \t %.8E \n", time_cur, m[0], x[0][0], x[0][1], x[0][2], tmp_r, v[0][0], v[0][1], v[0][2], tmp_v, pot[0], a[0][0], a[0][1], a[0][2], tmp_a, adot[0][0], adot[0][1], adot[0][2], tmp_adot, dt[0]); fprintf(out,"\n"); fclose(out); } } void write_bh_nb_data(double time_cur, int N, double m[], double3 x[], double3 v[]) { int nb = config->live_smbh_neighbor_number; int ind_sort[N_MAX]; double var_sort[N_MAX]; auto out = fopen("bh_neighbors.dat", "a"); /* 1st BH */ for (int i_bh=0; i_bh < config->live_smbh_count; i_bh++) { for (int i=0; iset_coordinates(x[i], v[i]); this->calc_gravity(); pot[i] += potential; a[i] += acceleration; adot[i] += jerk; } } virtual void calc_gravity() = 0; bool is_active; protected: double potential; double3 acceleration, jerk; double3 x, v; void set_coordinates(double3 x, double3 v) { this->x = x; this->v = v; } }; class Plummer : public External_gravity { public: Plummer(double m, double b) : m(m), b(b) {is_active=(m>0);} private: void calc_gravity() { double r2 = SQR(b); r2 += x.norm2(); double r = sqrt(r2); double rv_ij = v*x; double tmp = m / r; potential = -tmp; tmp /= r2; acceleration = - tmp * x; jerk = - tmp * (v - 3*rv_ij * x/r2); } double m, b; }; class Miyamoto_Nagai : public External_gravity { public: Miyamoto_Nagai(double m, double a, double b) : m(m), a(a), b(b) {is_active=(m>0);} private: void calc_gravity() { double x_ij=x[0], y_ij=x[1], z_ij=x[2]; double vx_ij=v[0], vy_ij=v[1], vz_ij=v[2]; auto z2_tmp = z_ij*z_ij + SQR(b); auto z_tmp = sqrt(z2_tmp); auto r2_tmp = x_ij*x_ij + y_ij*y_ij + SQR(z_tmp + a); auto r_tmp = sqrt(r2_tmp); potential = - m / r_tmp; auto tmp = m / (r2_tmp*r_tmp); acceleration[0] = - tmp * x_ij; acceleration[1] = - tmp * y_ij; acceleration[2] = - tmp * z_ij * (z_tmp + a)/z_tmp; tmp = m / (z_tmp*r2_tmp*r2_tmp*r_tmp); jerk[0] = tmp * (- vx_ij*z_tmp*r2_tmp + 3.0*x_ij*vx_ij*x_ij*z_tmp + 3.0*x_ij*vy_ij*y_ij*z_tmp + 3.0*x_ij*vz_ij*z_ij*SQR(z_tmp + a)); jerk[1] = tmp * (- vy_ij*z_tmp*r2_tmp + 3.0*y_ij*vx_ij*x_ij*z_tmp + 3.0*y_ij*vy_ij*y_ij*z_tmp + 3.0*y_ij*vz_ij*z_ij*SQR(z_tmp + a)); jerk[2] = tmp * (- vz_ij*(z_tmp + a)*(x_ij*x_ij*(z2_tmp*z_tmp + a*SQR(b)) + y_ij*y_ij*(z2_tmp*z_tmp + a*SQR(b)) - (2.0*a*(SQR(z_ij) - SQR(b))*z_tmp + 2.0*SQR(z_ij*z_ij) + SQR(b)*SQR(z_ij) - SQR(b)*(SQR(a) + SQR(b)))) + 3.0*vx_ij*x_ij*z_ij*z2_tmp*(z_tmp + a) + 3.0*vy_ij*y_ij*z_ij*z2_tmp*(z_tmp + a)) / z2_tmp; } double m, a, b; }; class Logarithmic_halo : public External_gravity { public: Logarithmic_halo(double v_halo, double r_halo) : v2_halo(v_halo*v_halo), r2_halo(r_halo*r_halo) {is_active=(r_halo>0);} private: void calc_gravity() { auto r2 = x.norm2(); auto rv_ij = 2.0*(v*x); auto r2_r2_halo = (r2 + r2_halo); potential = - 0.5*v2_halo * log(1.0 + r2/r2_halo); auto tmp = v2_halo/r2_r2_halo; acceleration = - tmp * x; tmp /= (r2 + r2_halo); jerk = tmp * (rv_ij * x - r2_r2_halo * v); } double v2_halo, r2_halo; }; void calc_self_grav(double t, double eps2, double &g6_calls, int n_loc, int n_act, int ind_act[], double3 x_act_new[], double3 v_act_new[], double pot_act_tmp[], double3 a_act_tmp[], double3 adot_act_tmp[], double h2_i[]) { /* calc the new grav for the active particles */ #ifdef TIMING get_CPU_time(&CPU_tmp_real0, &CPU_tmp_user0, &CPU_tmp_syst0); #endif g6_set_ti(clusterid, t); int ni = n_act; // TODO why is this needed? /* define the local phi, a, adot for these active particles */ for (int i=0; i &external_gravity_components, int n_act, double3 *x_act_new, double3 *v_act_new, double *pot_act_ext, double3 *a_act_new, double3* adot_act_new) { /* Define the external potential for all active particles on all nodes */ int ni = n_act; // TODO redundant? std::fill(pot_act_ext, pot_act_ext+n_act, 0.); for (auto component : external_gravity_components) { if (component->is_active) component->apply(n_act, x_act_new, v_act_new, pot_act_ext, a_act_new, adot_act_new); } #ifdef TIMING get_CPU_time(&CPU_tmp_real0, &CPU_tmp_user0, &CPU_tmp_syst0); #endif #ifdef EXTPOT_GAL_DEH for (i=0; ipn_c; std::copy(config->pn_usage.begin(), config->pn_usage.end(), usedOrNot); if (myRank == rootRank) { //TODO move it out of (myRank == rootRank) so you don't need to communicate them. eps = config->eps; t_end = config->t_end; dt_disk = config->dt_disk; dt_contr = config->dt_contr; dt_bh = config->dt_bh; eta = config->eta; strcpy(inp_fname, config->input_file_name.c_str()); if (config->binary_smbh_influence_sphere_output) for (int i=0; ilive_smbh_output && (config->live_smbh_count > 0)) { out = fopen("bh.dat", "w"); fclose(out); } if ((config->live_smbh_neighbor_output) && (config->live_smbh_count > 0)) { out = fopen("bh_neighbors.dat", "w"); fclose(out); } if (config->binary_smbh_influence_sphere_output) { out = fopen("bbh_inf.dat", "w"); fclose(out); } } else { // if (diskstep == 0) } // if (diskstep == 0) get_CPU_time(&CPU_time_real0, &CPU_time_user0, &CPU_time_syst0); } /* if (myRank == rootRank) */ /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Broadcast all useful values to all processors... */ MPI_Bcast(&N, 1, MPI_INT, rootRank, MPI_COMM_WORLD); MPI_Bcast(&eps, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&eta, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&t_end, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&dt_disk, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&dt_contr, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&dt_bh, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&time_cur, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); #ifdef NORM MPI_Bcast(&m_norm, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&r_norm, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&v_norm, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&t_norm, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); #endif // NORM #ifdef EXTPOT_BH MPI_Bcast(&m_bh, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&b_bh, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); #endif #ifdef EXTPOT_GAL_DEH MPI_Bcast(&m_ext, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&r_ext, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(&g_ext, 1, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); #endif /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); double normalization_mass=1, normalization_length=1, normalization_velocity=1; if (config->ext_units_physical) { normalization_mass = 1/config->unit_mass; normalization_length = 1000/config->unit_length; normalization_velocity = 1.52484071426404437233e+01*sqrt(config->unit_length/config->unit_mass); } Plummer ext_bulge(config->ext_m_bulge*normalization_mass, config->ext_b_bulge*normalization_length); Miyamoto_Nagai ext_disk(config->ext_m_disk*normalization_mass, config->ext_a_disk*normalization_length, config->ext_b_disk*normalization_length); Plummer ext_halo_plummer(config->ext_m_halo_plummer*normalization_mass, config->ext_b_halo_plummer*normalization_length); Logarithmic_halo ext_log_halo(config->ext_log_halo_v*normalization_velocity, config->ext_log_halo_r*normalization_length); std::vector external_gravity_components; external_gravity_components.push_back(&ext_bulge); external_gravity_components.push_back(&ext_disk); external_gravity_components.push_back(&ext_halo_plummer); external_gravity_components.push_back(&ext_log_halo); if (ext_bulge.is_active) printf("m_bulge = %.4E b_bulge = %.4E\n", config->ext_m_bulge*normalization_mass, config->ext_b_bulge*normalization_length); if (ext_disk.is_active) printf("m_disk = %.4E a_disk = %.4E b_disk = %.4E\n", config->ext_m_disk*normalization_mass, config->ext_a_disk*normalization_length, config->ext_b_disk*normalization_length); if (ext_halo_plummer.is_active) printf("m_halo = %.4E b_halo = %.4E\n", config->ext_m_halo_plummer*normalization_mass, config->ext_b_halo_plummer*normalization_length); if (ext_log_halo.is_active) printf("v_halo = %.6E r_halo = %.6E \n", config->ext_log_halo_v*normalization_velocity, config->ext_log_halo_r*normalization_length); printf("\n"); fflush(stdout); eta_s = eta/ETA_S_CORR; eta_bh = eta/ETA_BH_CORR; eps2 = SQR(eps); dt_min = 1.0*pow(2.0, DTMINPOWER); dt_max = 1.0*pow(2.0, DTMAXPOWER); if (dt_disk == dt_contr) dt_max = dt_contr; else dt_max = MIN(dt_disk, dt_contr); if (dt_max > 1.0) dt_max = 1.0; t_disk = dt_disk*(1.0+floor(time_cur/dt_disk)); t_contr = dt_contr*(1.0+floor(time_cur/dt_contr)); t_bh = dt_bh*(1.0+floor(time_cur/dt_bh)); if (myRank == rootRank) { printf("t_disk = %.6E t_contr = %.6E t_bh = %.6E \n", t_disk, t_contr, t_bh); printf("\n"); fflush(stdout); } /* if (myRank == rootRank) */ std::fill(t, t+N, time_cur); std::fill(dt, dt+N, dt_min); n_loc = N/n_proc; /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Broadcast the values of all particles to all processors... */ MPI_Bcast(ind, N, MPI_INT, rootRank, MPI_COMM_WORLD); MPI_Bcast(m, N, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(x, 3*N, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Bcast(v, 3*N, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Scatter the "local" vectors from "global" */ MPI_Scatter(ind, n_loc, MPI_INT, ind_loc, n_loc, MPI_INT, rootRank, MPI_COMM_WORLD); MPI_Scatter(m, n_loc, MPI_DOUBLE, m_loc, n_loc, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Scatter(t, n_loc, MPI_DOUBLE, t_loc, n_loc, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Scatter(dt, n_loc, MPI_DOUBLE, dt_loc, n_loc, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Scatter(x, 3*n_loc, MPI_DOUBLE, x_loc, 3*n_loc, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Scatter(v, 3*n_loc, MPI_DOUBLE, v_loc, 3*n_loc, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* init the local GRAPE's */ #ifdef MPI_OVERRIDE numGPU = 1; // TODO get this from config file clusterid = myRank % numGPU; #else MPI_Comm shmcomm; MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &shmcomm); MPI_Comm_size(shmcomm, &numGPU); MPI_Comm_rank(shmcomm, &clusterid); #endif printf("Rank of the processor %03d : Number of GPUs %01d : Cluster ID %01d \n", myRank, numGPU, clusterid); fflush(stdout); g6_open(clusterid); npipe = g6_npipes(); g6_set_tunit(new_tunit); g6_set_xunit(new_xunit); #ifdef ETICS grapite_read_particle_tags(N, "grapite.mask", myRank, n_loc); grapite_set_dt_exp(dt_exp); dt_exp = time_cur; // if we don't have a binary restart then we don't remember the coefficients, and we need to calculate them now. grapite_set_t_exp(t_exp); #endif /* initial load the particles to the local GRAPE's */ nj=n_loc; /* load the nj particles to the G6 */ for (int j=0; jlive_smbh_count == 2) { i_bh1 = 0; i_bh2 = 1; if (config->live_smbh_custom_eps >= 0) { m_bh1 = m[i_bh1]; m_bh2 = m[i_bh2]; x_bh1 = x[i_bh1]; v_bh1 = v[i_bh1]; x_bh2 = x[i_bh2]; v_bh2 = v[i_bh2]; // calculate and "minus" the BH <-> BH _softened_ pot, acc & jerk tmp_i = calc_force_n_BH(m_bh1, x_bh1, v_bh1, m_bh2, x_bh2, v_bh2, eps, &pot_bh1, a_bh1, adot_bh1, &pot_bh2, a_bh2, adot_bh2); pot[i_bh1] -= pot_bh1; pot[i_bh2] -= pot_bh2; a[i_bh1] -= a_bh1; a[i_bh2] -= a_bh2; adot[i_bh1] -= adot_bh1; adot[i_bh2] -= adot_bh2; // calculate and "plus" the new BH <-> BH _unsoftened_ pot, acc, jerk tmp_i = calc_force_n_BH(m_bh1, x_bh1, v_bh1, m_bh2, x_bh2, v_bh2, config->live_smbh_custom_eps, &pot_bh1, a_bh1, adot_bh1, &pot_bh2, a_bh2, adot_bh2); pot[i_bh1] += pot_bh1; pot[i_bh2] += pot_bh2; a[i_bh1] += a_bh1; a[i_bh2] += a_bh2; adot[i_bh1] += adot_bh1; adot[i_bh2] += adot_bh2; } if (config->binary_smbh_pn) { // calculate and "plus" the new BH <-> BH : PN1, PN2, PN2.5, PN3, PN3.5 : acc, jerk dt_bh_tmp = dt[0]; tmp_i = calc_force_pn_BH(m_bh1, x_bh1, v_bh1, s_bh1, m_bh2, x_bh2, v_bh2, s_bh2, C_NB, dt_bh_tmp, usedOrNot, (double(*)[3])a_pn1, (double(*)[3])adot_pn1, (double(*)[3])a_pn2, (double(*)[3])adot_pn2, myRank, rootRank); a[i_bh1] += a_pn1[1] + a_pn1[2] + a_pn1[3] + a_pn1[4] + a_pn1[5] + a_pn1[6]; a[i_bh2] += a_pn2[1] + a_pn2[2] + a_pn2[3] + a_pn2[4] + a_pn2[5] + a_pn2[6]; adot[i_bh1] += adot_pn1[1] + adot_pn1[2] + adot_pn1[3] + adot_pn1[4] + adot_pn1[5] + adot_pn1[6]; adot[i_bh2] += adot_pn2[1] + adot_pn2[2] + adot_pn2[3] + adot_pn2[4] + adot_pn2[5] + adot_pn2[6]; if (myRank == rootRank) { if (tmp_i == 505) { printf("PN RSDIST: %.8E \t %.8E \n", timesteps, time_cur); fflush(stdout); exit(-1); } } } } calc_ext_grav(external_gravity_components, n_act, x_act, v_act, pot_ext, a, adot); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Energy control... */ if (myRank == rootRank) { energy_contr(time_cur, timesteps, n_act_sum, g6_calls, rcm_sum, vcm_sum, E_tot_0, E_tot_corr_0, E_tot_corr_sd_0, skip_con, N, m, x, v, pot, pot_ext); } /* if (myRank == rootRank) */ #ifdef ETICS_DUMP if (diskstep==0) { sprintf(out_fname, "coeffs.%06d.%02d.dat", 0, myRank); grapite_dump(out_fname, 2); } #endif /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Scatter the "local" vectors from "global" */ MPI_Scatter(pot, n_loc, MPI_DOUBLE, pot_loc, n_loc, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Scatter(a, 3*n_loc, MPI_DOUBLE, a_loc, 3*n_loc, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); MPI_Scatter(adot, 3*n_loc, MPI_DOUBLE, adot_loc, 3*n_loc, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); #ifdef ETICS_CEP // First calculate the DC grapite_calc_center(N, m, x, v, xcm, vcm, xdc, vdc); // Now copy it to the global particle list memcpy(x[grapite_cep_index], xdc, 3*sizeof(double)); memcpy(v[grapite_cep_index], vdc, 3*sizeof(double)); // Now copy it to the local particle list for tha appropriate rank if (myRank == grapite_cep_index/n_loc) { memcpy(x_loc[grapite_cep_index - myRank*n_loc], xdc, 3*sizeof(double)); memcpy(v_loc[grapite_cep_index - myRank*n_loc], vdc, 3*sizeof(double)); } grapite_update_cep(time_cur, xdc, vdc, a[grapite_cep_index], adot[grapite_cep_index]); #endif /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Define initial timestep for all particles on all nodes */ for (int i=0; i dt_max) dt_tmp = dt_max; dt[i] = dt_tmp; if (config->dt_min_warning && (myRank == 0)) { if (dt[i] == dt_min) { printf("!!! Warning0: dt = dt_min = %.6E \t ind = %07d \n", dt[i], ind[i]); fflush(stdout); } } } /* i */ if (config->live_smbh_count > 0) { double min_dt = *std::min_element(dt, dt+N); for (int i=0; ilive_smbh_count; i++) dt[i] = min_dt; } /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Scatter the "local" vectors from "global" */ MPI_Scatter(dt, n_loc, MPI_DOUBLE, dt_loc, n_loc, MPI_DOUBLE, rootRank, MPI_COMM_WORLD); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* load the new values for particles to the local GRAPE's */ nj=n_loc; /* load the nj particles to the G6 */ for (int j=0; jlive_smbh_output) write_bh_data(time_cur, m, x, v, pot, a, adot, dt); /* Write BH NB data... */ if (config->live_smbh_neighbor_output) write_bh_nb_data(time_cur, N, m, x, v); } /* if (myRank == rootRank) */ /* Get the Starting time on rootRank */ if (myRank == rootRank) { get_CPU_time(&CPU_time_real0, &CPU_time_user0, &CPU_time_syst0); get_CPU_time(&CPU_time_real, &CPU_time_user, &CPU_time_syst); } /* if (myRank == rootRank) */ timesteps = 0.0; n_act_sum = 0.0; for (int i=1; i 0) for (int i=0; ilive_smbh_count > 0) { i_bh1 = 0; i_bh2 = 1; } #endif #ifdef TIMING get_CPU_time(&CPU_tmp_real, &CPU_tmp_user, &CPU_tmp_syst); DT_ACT_DEF2 += (CPU_tmp_user - CPU_tmp_user0); #endif #ifdef TIMING get_CPU_time(&CPU_tmp_real0, &CPU_tmp_user0, &CPU_tmp_syst0); #endif for (int i=0; ilive_smbh_count == 2) { if (config->live_smbh_custom_eps >= 0) { m_bh1 = m_act[i_bh1]; m_bh2 = m_act[i_bh2]; x_bh1 = x_act_new[i_bh1]; v_bh1 = v_act_new[i_bh1]; x_bh2 = x_act_new[i_bh2]; v_bh2 = v_act_new[i_bh2]; // calculate and "minus" the BH <-> BH softened pot, acc & jerk tmp_i = calc_force_n_BH(m_bh1, x_bh1, v_bh1, m_bh2, x_bh2, v_bh2, eps, &pot_bh1, a_bh1, adot_bh1, &pot_bh2, a_bh2, adot_bh2); pot_act_new[i_bh1] -= pot_bh1; pot_act_new[i_bh2] -= pot_bh2; a_act_new[i_bh1] -= a_bh1; a_act_new[i_bh2] -= a_bh2; adot_act_new[i_bh1] -= adot_bh1; adot_act_new[i_bh2] -= adot_bh2; // calculate and "plus" the new BH <-> BH unsoftened pot, acc, jerk tmp_i = calc_force_n_BH(m_bh1, x_bh1, v_bh1, m_bh2, x_bh2, v_bh2, config->live_smbh_custom_eps, &pot_bh1, a_bh1, adot_bh1, &pot_bh2, a_bh2, adot_bh2); pot_act_new[i_bh1] += pot_bh1; pot_act_new[i_bh2] += pot_bh2; a_act_new[i_bh1] += a_bh1; a_act_new[i_bh2] += a_bh2; adot_act_new[i_bh1] += adot_bh1; adot_act_new[i_bh2] += adot_bh2; } if (config->binary_smbh_pn) { // calculate and "plus" the new BH <-> BH : PN1, PN2, PN2.5, PN3, PN3.5 : acc, jerk dt_bh_tmp = dt[0]; tmp_i = calc_force_pn_BH(m_bh1, x_bh1, v_bh1, s_bh1, m_bh2, x_bh2, v_bh2, s_bh2, C_NB, dt_bh_tmp, usedOrNot, (double(*)[3])a_pn1, (double(*)[3])adot_pn1, (double(*)[3])a_pn2, (double(*)[3])adot_pn2, myRank, rootRank); a_act_new[i_bh1] += a_pn1[1] + a_pn1[2] + a_pn1[3] + a_pn1[4] + a_pn1[5] + a_pn1[6]; a_act_new[i_bh2] += a_pn2[1] + a_pn2[2] + a_pn2[3] + a_pn2[4] + a_pn2[5] + a_pn2[6]; adot_act_new[i_bh1] += adot_pn1[1] + adot_pn1[2] + adot_pn1[3] + adot_pn1[4] + adot_pn1[5] + adot_pn1[6]; adot_act_new[i_bh2] += adot_pn2[1] + adot_pn2[2] + adot_pn2[3] + adot_pn2[4] + adot_pn2[5] + adot_pn2[6]; if (myRank == rootRank) { if (tmp_i == 505) { printf("PN RSDIST: TS = %.8E \t t = %.8E \n", timesteps, time_cur); fflush(stdout); exit(-1); } } } } calc_ext_grav(external_gravity_components, n_act, x_act_new, v_act_new, pot_act_ext, a_act_new, adot_act_new); /* correct the active particles positions etc... on all the nodes */ #ifdef TIMING get_CPU_time(&CPU_tmp_real0, &CPU_tmp_user0, &CPU_tmp_syst0); #endif for (int i=0; ilive_smbh_count > 0) && (ind_act[i] < config->live_smbh_count)) dt_new = sqrt(eta_bh*(a1abs*a2dot1abs+adot1abs*adot1abs)/(adot1abs*a3dot1abs+a2dot1abs*a2dot1abs)); else dt_new = sqrt(eta*(a1abs*a2dot1abs+adot1abs*adot1abs)/(adot1abs*a3dot1abs+a2dot1abs*a2dot1abs)); if (dt_new < dt_min) dt_tmp = dt_min; if ((dt_new < dt_tmp) && (dt_new > dt_min)) { power = log(dt_new)/log(2.0) - 1; dt_tmp = pow(2.0, (double)power); } if ((dt_new > 2.0*dt_tmp) && (fmod(min_t, 2.0*dt_tmp) == 0.0) && (2.0*dt_tmp <= dt_max)) { dt_tmp *= 2.0; } dt_act[i] = dt_tmp; t_act[i] = min_t; pot_act[i] = pot_act_new[i]; x_act[i] = x_act_new[i]; v_act[i] = v_act_new[i]; a_act[i] = a_act_new[i]; adot_act[i] = adot_act_new[i]; if (config->dt_min_warning && (myRank == 0)) { if (dt_act[i] == dt_min) { printf("!!! Warning1: dt_act = dt_min = %.6E \t ind_act = %07d \n", dt[i], ind_act[i]); fflush(stdout); } } } /* i */ /* define the min. dt over all the act. part. and set it also for the BH... */ if (config->live_smbh_count > 0) { double min_dt = *std::min_element(dt_act, dt_act+n_act); if (config->live_smbh_count>=1) dt_act[i_bh1] = min_dt; if (config->live_smbh_count==2) dt_act[i_bh2] = min_dt; } if (config->binary_smbh_influence_sphere_output) { if (myRank == rootRank) { out = fopen("bbh_inf.dat", "a"); m_bh1 = m_act[i_bh1]; m_bh2 = m_act[i_bh2]; x_bh1 = x_act[i_bh1]; x_bh2 = x_act[i_bh2]; v_bh1 = v_act[i_bh1]; v_bh2 = v_act[i_bh2]; x_bbhc = (m_bh1*x_bh1 + m_bh2*x_bh2)/(m_bh1 + m_bh2); v_bbhc = (m_bh1*v_bh1 + m_bh2*v_bh2)/(m_bh1 + m_bh2); DR2 = SQR(x_bh1[0] - x_bh2[0]) + SQR(x_bh1[1] - x_bh2[1]) + SQR(x_bh1[2] - x_bh2[2]); DV2 = SQR(v_bh1[0] - v_bh2[0]) + SQR(v_bh1[1] - v_bh2[1]) + SQR(v_bh1[2] - v_bh2[2]); EB = -(m_bh1 + m_bh2) / sqrt(DR2) + 0.5 * DV2; SEMI_a = -0.5 * (m_bh1 + m_bh2)/EB; SEMI_a2 = SQR(SEMI_a); for (int i=2; ibinary_smbh_influence_radius_factor)) { if (inf_event[iii] == 0) { fprintf(out,"INF1 %.6E %.16E %07d %07d %.6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E % .6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E % .6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E %.6E % .6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E \n", timesteps, time_cur, i, ind_act[i], sqrt(DR2), x_bbhc[0], x_bbhc[1], x_bbhc[2], v_bbhc[0], v_bbhc[1], v_bbhc[2], m_bh1, x_bh1[0], x_bh1[1], x_bh1[2], v_bh1[0], v_bh1[1], v_bh1[2], pot_act[0], m_bh2, x_bh2[0], x_bh2[1], x_bh2[2], v_bh2[0], v_bh2[1], v_bh2[2], pot_act[1], sqrt(tmp_r2), m_act[i], x_act[i][0], x_act[i][1], x_act[i][2], v_act[i][0], v_act[i][1], v_act[i][2], pot_act[i], dt_act[i]); inf_event[iii] = 1; } } else { if (inf_event[iii] == 1) { fprintf(out,"INF2 %.6E %.16E %07d %07d %.6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E % .6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E % .6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E %.6E % .6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E \n", timesteps, time_cur, i, ind_act[i], sqrt(DR2), x_bbhc[0], x_bbhc[1], x_bbhc[2], v_bbhc[0], v_bbhc[1], v_bbhc[2], m_bh1, x_bh1[0], x_bh1[1], x_bh1[2], v_bh1[0], v_bh1[1], v_bh1[2], pot_act[0], m_bh2, x_bh2[0], x_bh2[1], x_bh2[2], v_bh2[0], v_bh2[1], v_bh2[2], pot_act[1], sqrt(tmp_r2), m_act[i], x_act[i][0], x_act[i][1], x_act[i][2], v_act[i][0], v_act[i][1], v_act[i][2], pot_act[i], dt_act[i]); } inf_event[iii] = 0; } /* if (tmp_r2 < DR2*R_INF2) */ } /* i */ fclose(out); } /* if (myRank == rootRank) */ } /* Return back the new coordinates + etc... of active part. to the global data... */ for (int i=0; i= t_bh) { if (myRank == rootRank) { /* Write BH data... */ if (config->live_smbh_output) write_bh_data(time_cur, m, x, v, pot, a, adot, dt); /* Write BH NB data... */ if (config->live_smbh_neighbor_output) write_bh_nb_data(time_cur, N, m, x, v); } /* if (myRank == rootRank) */ t_bh += dt_bh; } /* if (time_cur >= t_bh) */ if (time_cur >= t_contr) { if (myRank == rootRank) { energy_contr(time_cur, timesteps, n_act_sum, g6_calls, rcm_sum, vcm_sum, E_tot_0, E_tot_corr_0, E_tot_corr_sd_0, skip_con, N, m, x, v, pot, pot_ext); /* write cont data */ write_snap_data((char*)"data.con", diskstep, N, time_cur, ind, m, x, v); /* possible OUT for timing !!! */ #ifdef TIMING out = fopen("timing.dat", "a"); DT_TOT = DT_ACT_DEF1 + DT_ACT_DEF2 + DT_ACT_DEF3 + DT_ACT_PRED + DT_ACT_GRAV + DT_EXT_GRAV + DT_GMC_GRAV + DT_GMC_GMC_GRAV + DT_EXT_GMC_GRAV + DT_ACT_CORR + DT_ACT_LOAD + DT_STEVOL + DT_STARDISK + DT_STARDESTR + DT_ACT_REDUCE; fprintf(out,"%.8E \t %.6E \t %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f \t %.3f \t %.8E %.8E %.8E \t %.8E %.8E %.8E \n", time_cur, DT_TOT, 100.0*DT_ACT_DEF1/DT_TOT, 100.0*DT_ACT_DEF2/DT_TOT, 100.0*DT_ACT_DEF3/DT_TOT, 100.0*DT_ACT_PRED/DT_TOT, 100.0*DT_ACT_GRAV/DT_TOT, 100.0*DT_EXT_GRAV/DT_TOT, 100.0*DT_GMC_GRAV/DT_TOT, 100.0*DT_GMC_GMC_GRAV/DT_TOT, 100.0*DT_EXT_GMC_GRAV/DT_TOT, 100.0*DT_ACT_CORR/DT_TOT, 100.0*DT_ACT_LOAD/DT_TOT, 100.0*DT_STEVOL/DT_TOT, 100.0*DT_STARDISK/DT_TOT, 100.0*DT_STARDESTR/DT_TOT, 100.0*DT_ACT_REDUCE/DT_TOT, CPU_time_real-CPU_time_real0, CPU_time_user-CPU_time_user0, CPU_time_syst-CPU_time_syst0, timesteps, n_act_sum, 57.0*N*n_act_sum/(CPU_time_user-CPU_time_user0)/1.0E+09); fclose(out); #endif } /* if (myRank == rootRank) */ #ifdef ETICS_CEP // We are /inside/ a control step, so all particles must be synchronized; we can safely calculate their density centre. The acceleration and jerk currently in the memory are for the predicted position of the CEP, by calling grapite_calc_center we "correct" the position and velocity, but not the gravity at that point. // First calculate the DC grapite_calc_center(N, m, x, v, xcm, vcm, xdc, vdc); // Now copy it to the global particle list memcpy(x[grapite_cep_index], xdc, 3*sizeof(double)); memcpy(v[grapite_cep_index], vdc, 3*sizeof(double)); // Now copy it to the local particle list for tha appropriate rank if (myRank == grapite_cep_index/n_loc) { memcpy(x_loc[grapite_cep_index - myRank*n_loc], xdc, 3*sizeof(double)); memcpy(v_loc[grapite_cep_index - myRank*n_loc], vdc, 3*sizeof(double)); } grapite_update_cep(time_cur, xdc, vdc, a[grapite_cep_index], adot[grapite_cep_index]); #endif t_contr += dt_contr; } /* if (time_cur >= t_contr) */ if (time_cur >= t_disk) { if (myRank == rootRank) { diskstep++; char out_fname[256]; sprintf(out_fname, "%06d.dat", diskstep); write_snap_data(out_fname, diskstep, N, time_cur, ind, m, x, v); } /* if (myRank == rootRank) */ #ifdef ETICS_DUMP sprintf(out_fname, "coeffs.%06d.%02d.dat", diskstep, myRank); grapite_dump(out_fname, 2); #endif t_disk += dt_disk; } /* if (time_cur >= t_disk) */ } /* while (time_cur < t_end) */ /* close the local GRAPEs */ g6_close(clusterid); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); MPI_Reduce(&g6_calls, &g6_calls_sum, 1, MPI_DOUBLE, MPI_SUM, rootRank, MPI_COMM_WORLD); /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); if (myRank == rootRank) { /* Write some output for the timestep annalize... */ printf("\n"); printf("timesteps = %.0f Total sum of integrated part. = %.0f g6_calls on all nodes = %.0f \n", timesteps, n_act_sum, g6_calls); printf("\n"); printf("Real Speed = %.3f GFlops \n", 57.0*N*n_act_sum/(CPU_time_user-CPU_time_user0)/1.0E+09); fflush(stdout); } /* if (myRank == rootRank) */ /* Wait to all processors to finish his works... */ MPI_Barrier(MPI_COMM_WORLD); /* Finalize the MPI work */ MPI_Finalize(); return 0; }