phigrape/black_holes.cpp

255 lines
No EOL
11 KiB
C++

#include <cstdio>
#include <numeric>
#include "black_holes.h"
/* BEGIN legacy inclusion */
// I'm not going to touch this C file
#define SQR(x) ((x)*(x))
double L[3]; // needed in pn_bh_spin.c
#include "pn_bh_spin.c"
#undef SQR
/* END legacy inclusion */
void two_body_gravity(
const double m1, const double3 x1, const double3 v1,
const double m2, const double3 x2, const double3 v2,
const double eps,
double& pot1, double3& acc1, double3& jrk1,
double& pot2, double3& acc2, double3& jrk2)
{
double3 dx = x1 - x2;
double3 dv = v1 - v2;
double r2 = dx.norm2() + eps*eps;
double r = sqrt(r2);
double r3 = r2*r;
double r4 = r2*r2;
double RP = 3*(dx*dv)/r;
pot1 = -m2/r;
pot2 = -m1/r;
acc1 = -m2*dx/r3;
acc2 = m1*dx/r3;
jrk1 = -m2*(dv/r3 - RP*dx/r4);
jrk2 = m1*(dv/r3 - RP*dx/r4);
}
void Black_hole_physics::adjust_softening(
double& pot1, double& pot2,
double3& acc1, double3& acc2,
double3& jrk1, double3& jrk2)
{
if (eps_new < 0) return;
// calculate and "minus" the BH <-> BH softened pot, acc & jerk
two_body_gravity(
m1, x1, v1,
m2, x2, v2,
eps_old,
bbh_grav.pot1, bbh_grav.a1, bbh_grav.adot1,
bbh_grav.pot2, bbh_grav.a2, bbh_grav.adot2);
pot1 -= bbh_grav.pot1;
pot2 -= bbh_grav.pot2;
acc1 -= bbh_grav.a1;
acc2 -= bbh_grav.a2;
jrk1 -= bbh_grav.adot1;
jrk2 -= bbh_grav.adot2;
// calculate and "plus" the new BH <-> BH unsoftened pot, acc, jerk
two_body_gravity(
m1, x1, v1,
m2, x2, v2,
eps_new,
bbh_grav.pot1, bbh_grav.a1, bbh_grav.adot1,
bbh_grav.pot2, bbh_grav.a2, bbh_grav.adot2);
pot1 += bbh_grav.pot1;
pot2 += bbh_grav.pot2;
acc1 += bbh_grav.a1;
acc2 += bbh_grav.a2;
jrk1 += bbh_grav.adot1;
jrk2 += bbh_grav.adot2;
}
void Black_hole_physics::adjust_post_newtonian(
const double dt_bh, // pn_usage should be const
double3& acc1, double3& acc2,
double3& jrk1, double3& jrk2)
{
// calculate and "plus" the new BH <-> BH : PN1, PN2, PN2.5, PN3, PN3.5 : acc, jerk
// TODO maybe have the PN terms as local variables here?
int tmp;
tmp = calc_force_pn_BH(m1, x1, v1, bbh_grav.spin1,
m2, x2, v2, bbh_grav.spin2,
c, dt_bh, pn_usage,
(double(*)[3])bbh_grav.a_pn1, (double(*)[3])bbh_grav.adot_pn1,
(double(*)[3])bbh_grav.a_pn2, (double(*)[3])bbh_grav.adot_pn2, myRank, rootRank);
if (tmp == 505) exit(-1); // Very ugly way to terminate
// NOTE we have these _corr variables accumulating the corrections before
// applying it. It's almost the same but different from applying each
// correction term in a loop.
double3 acc1_corr(0,0,0), acc2_corr(0,0,0), jrk1_corr(0,0,0), jrk2_corr(0,0,0);
for (int i=1; i<7; i++) {
acc1_corr += bbh_grav.a_pn1[i];
acc2_corr += bbh_grav.a_pn2[i];
jrk1_corr += bbh_grav.adot_pn1[i];
jrk2_corr += bbh_grav.adot_pn2[i];
}
acc1 += acc1_corr;
acc2 += acc2_corr;
jrk1 += jrk1_corr;
jrk2 += jrk2_corr;
}
void Black_hole_physics::write_bh_data(double time_cur, double m[], double3 x[], double3 v[], const std::vector<double>& pot, double3 a[], double3 adot[], double dt[])
{
// This function logs data on the black hole(s). It uses both external data
// (the arguments to this function) and optionall internal data to this
// object (the most recently calculated force and post-Newtonian terms).
auto out = fopen("bh.dat", "a");
if (count == 2) {
for (int i=0; i < 2; i++) {
double3 *a_pn, *adot_pn, a_bh, adot_bh;
double pot_bh;
if (i==0) {
a_pn = bbh_grav.a_pn1;
adot_pn = bbh_grav.adot_pn1;
pot_bh = bbh_grav.pot1;
a_bh = bbh_grav.a1;
adot_bh = bbh_grav.adot1;
} else {
a_pn = bbh_grav.a_pn2;
adot_pn = bbh_grav.adot_pn2;
pot_bh = bbh_grav.pot2;
a_bh = bbh_grav.a2;
adot_bh = bbh_grav.adot2;
}
if (eps_new >= 0) {
fprintf(out, "%.16E \t %.8E \t % .16E % .16E % .16E \t %.16E \t % .16E % .16E % .16E \t %.16E \t % .8E \t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E \t %.8E \t\t % .8E \t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E ",
time_cur, m[i],
x[i][0], x[i][1], x[i][2], x[i].norm(),
v[i][0], v[i][1], v[i][2], v[i].norm(),
pot[i],
a[i][0], a[i][1], a[i][2], a[i].norm(),
adot[i][0], adot[i][1], adot[i][2], adot[i].norm(),
dt[i],
pot_bh,
a_bh[0], a_bh[1], a_bh[2], a_bh.norm(),
adot_bh[0], adot_bh[1], adot_bh[2], adot_bh.norm());
if (c > 0) {
fprintf(out, "\t");
for (int pn_idx=0; pn_idx < 7; pn_idx++) {
fprintf(out, "\t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E ", a_pn[pn_idx][0], a_pn[pn_idx][1], a_pn[pn_idx][2], a_pn[pn_idx].norm(), adot_pn[pn_idx][0], adot_pn[pn_idx][1], adot_pn[pn_idx][2], adot_pn[pn_idx].norm());
}
}
fprintf(out, "\n");
} else {
fprintf(out,"%.16E \t %.8E \t % .16E % .16E % .16E \t %.16E \t % .16E % .16E % .16E \t %.16E \t % .8E \t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E \t %.8E \n",
time_cur, m[i],
x[i][0], x[i][1], x[i][2], x[i].norm(),
v[i][0], v[i][1], v[i][2], v[i].norm(),
pot[i],
a[i][0], a[i][1], a[i][2], a[i].norm(),
adot[i][0], adot[i][1], adot[i][2], adot[i].norm(),
dt[i]);
}
}
fprintf(out, "\n");
} else if (count == 1) {
fprintf(out,"%.16E \t %.8E \t % .16E % .16E % .16E \t %.16E \t % .16E % .16E % .16E \t %.16E \t % .8E \t % .8E % .8E % .8E \t %.8E \t % .8E % .8E % .8E \t %.8E \t %.8E \n",
time_cur, m[0],
x[0][0], x[0][1], x[0][2], x[0].norm(),
v[0][0], v[0][1], v[0][2], v[0].norm(),
pot[0],
a[0][0], a[0][1], a[0][2], a[0].norm(),
adot[0][0], adot[0][1], adot[0][2], adot[0].norm(),
dt[0]);
fprintf(out,"\n");
}
fclose(out);
}
void Write_bh_nb_data::operator()(double time_cur)
{
for (int i_bh=0; i_bh < smbh_count; i_bh++) {
for (int i=0; i<N; i++) var_sort[i] = (x[i]-x[i_bh]).norm();
std::iota(ind_sort.begin(), ind_sort.end(), 0);
std::partial_sort(ind_sort.begin(), ind_sort.begin() + nb, ind_sort.begin() + N, [&](int i, int j) {return var_sort[i] < var_sort[j];});
fprintf(out,"%.16E \t %07d \t %.8E \t % .8E % .8E % .8E \t % .8E % .8E % .8E \t",
time_cur,
i_bh,
m[i_bh],
x[i_bh][0], x[i_bh][1], x[i_bh][2],
v[i_bh][0], v[i_bh][1], v[i_bh][2]);
for (int j=1; j < nb; j++) {
int i = ind_sort[j];
fprintf(out,"%02d %07d %.8E % .8E % .8E % .8E %.8E % .8E % .8E % .8E %.8E \t",
j, i,
m[i],
x[i][0], x[i][1], x[i][2], (x[i]-x[i_bh]).norm(),
v[i][0], v[i][1], v[i][2], (v[i]-v[i_bh]).norm());
}
fprintf(out,"\n");
}
fprintf(out, "\n"); // this is redundant
fflush(out);
}
void Binary_smbh_influence_sphere_output::operator()(const std::vector<int>& ind_act, int n_act, double timesteps, double time_cur)
{
double m_bh1 = m[0];
double m_bh2 = m[1];
double3 x_bh1 = x[0];
double3 x_bh2 = x[1];
double3 v_bh1 = v[0];
double3 v_bh2 = v[1];
double3 x_bbhc = (m_bh1*x_bh1 + m_bh2*x_bh2)/(m_bh1 + m_bh2);
double3 v_bbhc = (m_bh1*v_bh1 + m_bh2*v_bh2)/(m_bh1 + m_bh2);
double DR2 = (x_bh1 - x_bh2).norm2();
double DV2 = (v_bh1 - v_bh2).norm2();
double EB = -(m_bh1 + m_bh2) / sqrt(DR2) + 0.5 * DV2;
double SEMI_a = -0.5 * (m_bh1 + m_bh2)/EB;
double SEMI_a2 = SEMI_a*SEMI_a;
for (int i=0; i<n_act; i++) {
int j_act = ind_act[i];
if (j_act<2) continue;
const double& pot_bh1 = pot[0];
const double& pot_bh2 = pot[1];
const double& m_act = m[j_act];
const double3& x_act = x[j_act];
const double3& v_act = v[j_act];
const double& dt_act = dt[j_act];
const double& pot_act = pot[j_act];
double tmp_r2 = (x_act - x_bbhc).norm2();
if (tmp_r2 < SEMI_a2*factor*factor) {
if (inf_event[j_act] == 0) {
fprintf(out,"INF1 %.6E %.16E %07d %07d %.6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E % .6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E % .6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E %.6E % .6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E \n",
timesteps, time_cur, i, j_act,
sqrt(DR2), x_bbhc[0], x_bbhc[1], x_bbhc[2], v_bbhc[0], v_bbhc[1], v_bbhc[2],
m_bh1, x_bh1[0], x_bh1[1], x_bh1[2], v_bh1[0], v_bh1[1], v_bh1[2], pot_bh1,
m_bh2, x_bh2[0], x_bh2[1], x_bh2[2], v_bh2[0], v_bh2[1], v_bh2[2], pot_bh2,
sqrt(tmp_r2),
m_act, x_act[0], x_act[1], x_act[2], v_act[0], v_act[1], v_act[2], pot_act,
dt_act);
inf_event[j_act] = 1;
}
} else {
if (inf_event[j_act] == 1) {
fprintf(out,"INF2 %.6E %.16E %07d %07d %.6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E % .6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E % .6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E %.6E % .6E % .6E % .6E % .6E % .6E % .6E % .6E %.6E \n",
timesteps, time_cur, i, ind_act[i],
sqrt(DR2), x_bbhc[0], x_bbhc[1], x_bbhc[2], v_bbhc[0], v_bbhc[1], v_bbhc[2],
m_bh1, x_bh1[0], x_bh1[1], x_bh1[2], v_bh1[0], v_bh1[1], v_bh1[2], pot_bh1,
m_bh2, x_bh2[0], x_bh2[1], x_bh2[2], v_bh2[0], v_bh2[1], v_bh2[2], pot_bh2,
sqrt(tmp_r2),
m_act, x_act[0], x_act[1], x_act[2], v_act[0], v_act[1], v_act[2], pot_act,
dt_act);
}
inf_event[j_act] = 0;
} /* if (tmp_r2 < DR2*R_INF2) */
} /* i */
fflush(out);
}